# Space-filling curves for 3D mesh traversals 

Michael Bader<br>TU München<br>Herman Haverkort<br>TU Eindhoven<br>Tobias Weinzierl<br>Durham University

## Traversing a regular grid



Finite Element Method:

## repeat

for each square cell retrieve current values of the four vertices compute and store new values for the four vertices
until happy

For example: plate with heat sources and sinks at subset of vertices; compute steady-state heat distribution and flow.

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## Traversing a regular grid



In which order? Row by row?

Finite Element Method:
repeat

## for each square cell

 retrieve current values of the four vertices compute and store new values for the four verticesuntil happy

In what data structure? Matrix?

For example: plate with heat sources and sinks at subset of vertices; compute steady-state heat distribution and flow.

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## Traversing an irregular grid



Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## Traversing an irregular grid



Hilbert order


Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## Traversing an irregular grid



Hilbert order


Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## Traversing an irregular grid



Hilbert order


Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## Traversing an irregular grid



Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## Traversing an irregular grid



Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## Traversing an irregular grid



Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## Traversing an irregular grid



Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## Traversing an irregular grid



Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## Traversing an irregular grid



Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## Traversing an irregular grid



Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## Traversing an irregular grid



Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## Traversing an irregular grid



Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## Traversing an irregular grid



Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## Traversing an irregular grid



Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## Traversing an irregular grid



Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## Traversing an irregular grid



Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## Traversing an irregular grid



Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## Traversing an irregular grid



Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## Traversing an irregular grid



Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## Traversing an irregular grid



Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## Traversing an irregular grid



On any edge between two quadrants order 2 nd time $=$ reverse order 1st time

Hilbert order


Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## Traversing an irregular grid



Consecutive squares always share an edge $\rightarrow(?)$ well-shaped partitions for load balancing

Hilbert order


Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## Traversing an irregular grid



Sierpiński order


Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## Traversing an irregular grid



Sierpiński order


Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## What about 3D?

## Desiderata:

- octree traversal (cubes/simplices recursively subdivided into 8 parts)
- face-continuous: consecutive cells share a face
- palindromic: for each pair of adjacent cubes/simplices $C_{1}$ and $C_{2}$, second traversal of common face is reverse of first traversal


Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## What about 3D?

## Desiderata:

- octree traversal (cubes/simplices recursively subdivided into 8 parts)
- face-continuous: consecutive cells share a face
- palindromic: for every set of cubes/simplices sharing a common face/edge, every subseq. traversal of common face/edge is reverse of previous traversal


Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## What about 3D?

## Desiderata:

- octree traversal (cubes/simplices recursively subdivided into 8 parts)
- face-continuous: consecutive cells share a face
- palindromic: for every set of cubes/simplices sharing a common face/edge, every subseq. traversal of common face/edge is reverse of previous traversal


Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## What about 3D?

## Desiderata:

- octree traversal (cubes/simplices recursively subdivided into 8 parts)
- face-continuous: consecutive cells share a face
- palindromic: for every set of cubes/simplices sharing a common face/edge, every subseq. traversal of common face/edge is reverse of previous traversal


Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## What about cubes?

Desired: palindromic, face-continuous octree traversal
BADER 2013: finds no solution within a restricted framework

## What about cubes?

Desired: palindromic, face-continuous octree traversal
BADER 2013: finds no solution within a restricted framework Weinzierl (pers. conf.):


Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## What about cubes?

Desired: palindromic, face-continuous octree traversal
BADER 2013: finds no solution within a restricted framework Weinzierl (pers. conf.):


Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## What about cubes?

Desired: palindromic, face-continuous octree traversal
BADER 2013: finds no solution within a restricted framework Weinzierl (pers. conf.):


Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## What about cubes?

Desired: palindromic, face-continuous octree traversal
BADER 2013: finds no solution within a restricted framework
Weinzierl (pers. conf.):


Brute-force search $4 \times 4 \times 4$ finds solutions, but all self-similar recursive expansions fail. Brute-force search $8 \times 8 \times 8$ is infeasible (and would still generate false positives).

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## What about cubes?

Generate $S=$ all $4 \times 4 \times 4$ traversals that:

- traverse octants one by one;
- are face-continuous;

- have matching patterns on opposite sides of each of the twelve interior $2 \times 2$-faces.



## What about cubes?

Generate $S=$ all $4 \times 4 \times 4$ traversals that:

- traverse octants one by one;


- are face-continuous;
- have matching patterns on opposite sides of each of the twelve interior $2 \times 2$-faces.

Finds 8384, for example:


## What about cubes?

Generate $S=$ all $4 \times 4 \times 4$ traversals that:

- traverse octants one by one;

 or
 or 4
- are face-continuous;
- have matching patterns on opposite sides of each of the twelve interior $2 \times 2$-faces.

Finds 8384, for example:


Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## What about cubes?

Generate $S=$ all $4 \times 4 \times 4$ traversals that:

- traverse octants one by one;

 or
 or 4
- are face-continuous;
- have matching patterns on opposite sides of each of the twelve interior $2 \times 2$-faces.

Finds 8384, for example:


Identify face patterns by id $\in\{0, \ldots, 255\}$

## What about cubes?

Generate $S=$ all $4 \times 4 \times 4$ traversals that:

- traverse octants one by one;


- are face-continuous;
- have matching patterns on opposite sides of each of the twelve interior $2 \times 2$-faces.

Finds 8384, for example:


Identify face patterns
by id $\in\{0, \ldots, 255\}$

## What about cubes?

Generate $S=$ all $4 \times 4 \times 4$ traversals that:

- traverse octants one by one;
- are face-continuous;

- have matching patterns on opposite sides of each of the twelve interior $2 \times 2$-faces.

Finds 8384, for example:
$S^{\prime}=$
$48 \times 8384=402432$ traversals obtained by reflections and rotations


Identify face patterns by id $\in\{0, \ldots, 255\}$

## What about cubes?

Generate $S=$ all $4 \times 4 \times 4$ traversals that:

- traverse octants one by one;
- are face-continuous;

- have matching patterns on opposite sides of each of the twelve interior $2 \times 2$-faces.

Finds 8384, for example:
$S^{\prime}=$
$48 \times 8384=402432$ traversals obtained by reflections and rotations


Identify face patterns by id $\in\{0, \ldots, 255\}$

Try to refine $4 \times 4 \times 4$ traversals from $S$ into $8 \times 8 \times 8$ traversals by replacing $2 \times 2 \times 2$ traversals in octants by $4 \times 4 \times 4$ traversals from $S^{\prime}$

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## What about cubes?

Generate $S=$ all $4 \times 4 \times 4$ traversals that:

- traverse octants one by one;
- are face-continuous;

- have matching patterns on opposite sides of each of the twelve interior $2 \times 2$-faces.

Finds 8384, for example:
$S^{\prime}=$
$48 \times 8384=402432$ traversals obtained by reflections and rotations

For each traversal from $S$ :


Identify face patterns by id $\in\{0, \ldots, 255\}$
exhaustive search of all choices of patterns $\in\{0, \ldots, 255\}$ for 12 interior faces:

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## What about cubes?

Generate $S=$ all $4 \times 4 \times 4$ traversals that:

- traverse octants one by one;
- are face-continuous;

- have matching patterns on opposite sides of each of the twelve interior $2 \times 2$-faces.

Finds 8384, for example:
$S^{\prime}=$
$48 \times 8384=402432$ traversals obtained by reflections and rotations

For each traversal from $S$ :


Identify face patterns by id $\in\{0, \ldots, 255\}$
exhaustive search of all choices of patterns $\in\{0, \ldots, 255\}$ for 12 interior faces: verify for each octant:
$S^{\prime}$ contains $4 \times 4 \times 4$ traversal with matching octant order and face patterns
Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## What about cubes?

Generate $S=$ all $4 \times 4 \times 4$ traversals that:

- traverse octants one by one;
- are face-continuous;

- have matching patterns on opposite sides of each of the twelve interior $2 \times 2$-faces.

Finds 8384, for example:
$S^{\prime}=$
$48 \times 8384=402432$ traversals obtained by reflections and rotations

For each traversal from $S$ :


Identify face patterns
by id $\in\{0, \ldots, 255\}$

exhaustive search of all choices of patterns $\in\{0, \ldots, 255\}$ for 12 interior faces: verify for each octant:
$S^{\prime}$ contains $4 \times 4 \times 4$ traversal with matching octant order and face patterns
Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## What about cubes?

Generate $S=$ all $4 \times 4 \times 4$ traversals that:

- traverse octants one by one;
- are face-continuous;

- have matching patterns on opposite sides of each of the twelve interior $2 \times 2$-faces.

Finds 8584 , for example:
410
$S^{\prime}=410$
$48 \times 8384=402432$ traversals obtained by reflections and rotations

For each traversal from $S$ :
Identify face patterns by id $\in\{0, \ldots, 255\}$
unsuccessful for all but 410 traversals from $S$ (no $8 \times 8 \times 8$-refinement exists)
exhaustive search of all choices of patterns $\in\{0, \ldots, 255\}$ for 12 interior faces: verify for each octant:
$S^{\prime}$ contains $4 \times 4 \times 4$ traversal with matching octant order and face patterns
Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## What about cubes?

Generate $S=$ all $4 \times 4 \times 4$ traversals that:

- traverse octants one by one;
- are face-continuous;

- have matching patterns on opposite sides of each of the twelve interior $2 \times 2$-faces. Finds 8584 , for example: 410
$S^{\prime}=410 \quad 19680$
$48 \times 2384=402432$ traversals obtained by reflections and rotations

For each traversal from $S$ :


Identify face patterns
by id $\in\{0, \ldots, 255\}$
unsuccessful for all but 1 traversal from $S$ (no $16 \times 16 \times 16$-refinement) exhaustive search of all choices of patterns $\in\{0, \ldots, 255\}$ for 12 interior faces: verify for each octant:
$S^{\prime}$ contains $4 \times 4 \times 4$ traversal with matching octant order and face patterns
Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## What about cubes?

Generate $S=$ all $4 \times 4 \times 4$ traversals that:

- traverse octants one by one;
- are face-continuous;

- have matching patterns on opposite sides of each of the twelve interior $2 \times 2$-faces. Finds 8884, for example:
 traversals obtained by reflections and rotations

For each traversal from $S$ :


Identify face patterns by id $\in\{0, \ldots, 255\}$
unsuccessful for all but 1 traversal from $S$ (no $16 \times 16 \times 16$-refinement)
exhaustive search of all choices of patterns $\in\{0, \ldots, 255\}$ for 12 interior faces: verify for each octant:
$S^{\prime}$ contains $4 \times 4 \times 4$ traversal with matching octant order and face patterns
Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## What about cubes?

Generate $S=$ all $4 \times 4 \times 4$ traversals that:

- traverse octants one by one;
- are face-continuous;

- have matching patterns on opposite sides of each of the twelve interior $2 \times 2$-faces. Finds 8584 , for example:
 traversals obtained by reflections and rotations

For each traversal from $S$ :


Identify face patterns
by id $\in\{0, \ldots, 255\}$
no solution found $\rightarrow$
no palindr., face-contin. octree traversal exists
exhaustive search of all choices of patterns $\in\{0, \ldots, 255\}$ for 12 interior faces: verify for each octant:
$S^{\prime}$ contains $4 \times 4 \times 4$ traversal with matching octant order and face patterns
Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## What about cubes?

3D Peano curve (applied by Weinzierl 2009):


Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## What about cubes?

3D Peano curve (applied by Weinzierl 2009):


Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## What about cubes?

3D Peano curve (applied by Weinzierl 2009):


Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## What about cubes?

3D Peano curve (applied by Weinzierl 2009):


Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## What about cubes?

3D Peano curve (applied by Weinzierl 2009):

in each subcube, reflect pattern to connect to previous and next subcube

## What about cubes?

3D Peano curve (applied by Weinzierl 2009):


Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## What about cubes?

3D Peano curve (applied by Weinzierl 2009):


Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## What about cubes?

3D Peano curve (applied by Weinzierl 2009):


Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## What about cubes?

3D Peano curve (applied by Weinzierl 2009):


Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## What about cubes?

3D Peano curve (applied by Weinzierl 2009):


Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## What about cubes?

3D Peano curve (applied by Weinzierl 2009):


Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## What about cubes?

3D Peano curve (applied by Weinzierl 2009):


Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## What about cubes?

3D Peano curve (applied by Weinzierl 2009):


Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## What about cubes?

3D Peano curve (applied by Weinzierl 2009):


Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## What about cubes?

3D Peano curve (applied by WeinzIERL 2009):


Desired: palindromic, face-continuous octree traversal

## Cons:

- recursive subdivision into 27 subcubes $\rightarrow$ adaptive refinement less adaptive;
- partitions have larger surface-for-volume than with octree traversals (SASBURG 2011).

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## What about cubes?

Faloutsos's traversal (generalized from Faloutsos 1986)
Octants $A$ and $B$ share face $f \rightarrow$ traversal in $B$ is reversed image of $A$ under reflection in $f$


Desired: palindromic, face-sontinuous octree traversal

## What about cubes?

Faloutsos's traversal (generalized from Faloutsos 1986)
Octants $A$ and $B$ share face $f \rightarrow$ traversal in $B$ is reversed image of $A$ under reflection in $f$


Desired: palindromic, face-continuous octree traversal
Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## What about cubes?

Morton order (Morton 1966): no rotations or reflections


Desired: palindromic, face-continuous octree traversal
Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## What about cubes?

Morton order (Morton 1966): no rotations or reflections


Desired: palindromic, face-continuous octree traversal
Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## What about cubes?

Morton order (Morton 1966): no rotations or reflections

homodromic: 2nd traversal of face $=$ reverse of 1st or the same

Desired: palindromic, face-continuous octree traversal
Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## What about cubes?

Morton order (Morton 1966): no rotations or reflections

homodromic: 2nd traversal of face $=$ reverse of 1st or the same
quasi-face-continuous: interior of union of consecutive set of cells 1 . has $O(1)$ connected components.
Desired: palindrontic, face-continuous octree traversal
Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## What about cubes?

Morton order (Morton 1966): no rotations or reflections

homodromic: 2nd traversal of face $=$ reverse of 1st or the same

L:
R:
B: stack for $\frac{\text { pushing }}{\text { popping }}$ vertices on
F: H:

pushed onto $R$; turned onto $L$ after 4th octant

pushed onto $T$; turned onto $B$ aft. 2nd/6th oct.
left
right
bottom face
top
front
hind

pushed onto $H$; turned onto $F$ aft. $1 / 3 / 5 / 7$ th

Desired: palindromic, face-continuous octree traversal has $O(1)$ connected components.

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## What about cubes?

## Desiderata:

- octree traversal (cubes/simplices recursively subdivided into 8 parts)
- face-continuous: consecutive cells share a face altern.: quasi-face-cont.: interior of union of set of consecutive cells has $O(1)$ components
- palindromic: for every set of adjacent cubes/simplices sharing a common face/edge, every subseq. traversal of common face/edge is reverse of previous traversal altern.: homodromic: subsequent traversals are reverse or same (more stack operations required)

| octree trav. | non-face-continuous | quasi-face-continuous | face-continuous |
| :--- | :---: | :---: | :---: |
| non- <br> homodromic |  |  | 1000 s of generalized <br> Hilbert curves |
| homodromic |  | Morton traversal |  |
| palindromic | Faloutsos's traversal |  | computer says no |

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## What about cubes?

## Desiderata:

- octree traversal (cubes/simplices recursively subdivided into 8 parts)
- face-continuous: consecutive cells share a face altern.: quasi-face-cont.: interior of union of set of consecutive cells has $O(1)$ components
- palindromic: for every set of adjacent cubes/simplices sharing a common face/edge, every subseq. traversal of common face/edge is reverse of previous traversal altern.: homodromic: subsequent traversals are reverse or same (more stack operations required)

| octree trav. | non-face-continuous | quasi-face-continuous | face-continuous |
| :--- | :---: | :---: | :---: |
| non- <br> homodromic |  |  | 1000 s of generalized <br> Hilbert curves |
| homodromic |  | Morton traversal | computer says no |
| palindromic | Faloutsos's traversal |  | computer says no |

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## What about cubes?

## Desiderata:

- octree traversal (cubes/simplices recursively subdivided into 8 parts)
- face-continuous: consecutive cells share a face altern.: quasi-face-cont.: interior of union of set of consecutive cells has $O(1)$ components
- palindromic: for every set of adjacent cubes/simplices sharing a common face/edge, every subseq. traversal of common face/edge is reverse of previous traversal altern.: homodromic: subsequent traversals are reverse or same (more stack operations required)

| octree trav. | non-face-continuous | quasi-face-continuous | face-continuous |
| :--- | :---: | :---: | :---: |
| non- <br> homodromic |  | 1000 s of generalized <br> Hilbert curves |  |
| homodromic | Morton traversal | computer says no |  |
| palindromic | Faloutsos's traversal | open <br> Howi-face-continuous <br> traversals? | computer says no |

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## Tetrahedral meshes

2D: any $\triangle$ can be dissected into four similar (but smaller) triangles.
3D: If $T$ is a $k$-reptile tetrahedron (= divisible into $k$ congruent tetrahedra similar to $T$ ), then $k$ is a cubic number $(\geq 8)$.
(Matousek \& Savernova 2011)
Most known 8-reptile tetrahedra are Hill tetrahedra (after Hill 1895):
convex hull of $0, \quad b_{1}, \quad b_{1}+b_{2}, \quad b_{1}+b_{2}+b_{3}$, where $b_{1}, b_{2}, b_{3}$ are vectors of equal length, with equal angles $\alpha<\frac{2}{3} \pi$ between each pair

$$
\alpha=\pi / 2
$$



## Tetrahedral meshes

2D: any $\triangle$ can be dissected into four similar (but smaller) triangles.
3D: If $T$ is a $k$-reptile tetrahedron (= divisible into $k$ congruent tetrahedra similar to $T$ ), then $k$ is a cubic number $(\geq 8)$.
(Matousek \& Savernova 2011)
Most known 8-reptile tetrahedra are Hill tetrahedra (after Hill 1895): convex hull of $0, \quad b_{1}, \quad b_{1}+b_{2}, \quad b_{1}+b_{2}+b_{3}$, where $b_{1}, b_{2}, b_{3}$ are vectors of equal length, with equal angles $\alpha<\frac{2}{3} \pi$ between each pair

$$
\alpha=\pi / 2
$$



## Tetrahedral meshes

2D: any $\triangle$ can be dissected into four similar (but smaller) triangles.
3D: If $T$ is a $k$-reptile tetrahedron (= divisible into $k$ congruent tetrahedra similar to $T$ ), then $k$ is a cubic number $(\geq 8)$.
(Matousek \& Savernova 2011)
Most known 8-reptile tetrahedra are Hill tetrahedra (after Hill 1895): convex hull of $0, \quad b_{1}, \quad b_{1}+b_{2}, \quad b_{1}+b_{2}+b_{3}$, where $b_{1}, b_{2}, b_{3}$ are vectors of equal length, with equal angles $\alpha<\frac{2}{3} \pi$ between each pair

$$
\alpha=\pi / 2
$$



## Tetrahedral meshes

2D: any $\triangle$ can be dissected into four similar (but smaller) triangles.
3D: If $T$ is a $k$-reptile tetrahedron (= divisible into $k$ congruent tetrahedra similar to $T$ ), then $k$ is a cubic number $(\geq 8)$.
(Matousek \& Savernova 2011)
Most known 8-reptile tetrahedra are Hill tetrahedra (after Hill 1895): convex hull of $0, \quad b_{1}, \quad b_{1}+b_{2}, \quad b_{1}+b_{2}+b_{3}$, where $b_{1}, b_{2}, b_{3}$ are vectors of equal length, with equal angles $\alpha<\frac{2}{3} \pi$ between each pair

$$
\alpha=\pi / 2
$$



## Tetrahedral meshes

2D: any $\triangle$ can be dissected into four similar (but smaller) triangles.
3D: If $T$ is a $k$-reptile tetrahedron (= divisible into $k$ congruent tetrahedra similar to $T$ ), then $k$ is a cubic number $(\geq 8)$.
(Matousek \& Savernova 2011)
Most known 8-reptile tetrahedra are Hill tetrahedra (after Hill 1895): convex hull of $0, \quad b_{1}, \quad b_{1}+b_{2}, \quad b_{1}+b_{2}+b_{3}$, where $b_{1}, b_{2}, b_{3}$ are vectors of equal length, with equal angles $\alpha<\frac{2}{3} \pi$ between each pair

$$
\alpha=\pi / 2
$$



## Tetrahedral meshes

2D: any $\triangle$ can be dissected into four similar (but smaller) triangles.
3D: If $T$ is a $k$-reptile tetrahedron (= divisible into $k$ congruent tetrahedra similar to $T$ ), then $k$ is a cubic number $(\geq 8)$.
(Matousek \& Savernova 2011)
Most known 8-reptile tetrahedra are Hill tetrahedra (after Hill 1895): convex hull of $0, \quad b_{1}, \quad b_{1}+b_{2}, \quad b_{1}+b_{2}+b_{3}$, where $b_{1}, b_{2}, b_{3}$ are vectors of equal length, with equal angles $\alpha<\frac{2}{3} \pi$ between each pair

$$
\alpha=\pi / 2
$$



## Tetrahedral meshes

2D: any $\triangle$ can be dissected into four similar (but smaller) triangles.
3D: If $T$ is a $k$-reptile tetrahedron (= divisible into $k$ congruent tetrahedra similar to $T$ ), then $k$ is a cubic number $(\geq 8)$.
(Matousek \& Savernova 2011)
Most known 8-reptile tetrahedra are Hill tetrahedra (after Hill 1895): convex hull of $0, \quad b_{1}, \quad b_{1}+b_{2}, \quad b_{1}+b_{2}+b_{3}$, where $b_{1}, b_{2}, b_{3}$ are vectors of equal length, with equal angles $\alpha<\frac{2}{3} \pi$ between each pair

$$
\alpha=\pi / 2
$$



## Tetrahedral meshes

2D: any $\triangle$ can be dissected into four similar (but smaller) triangles.
3D: If $T$ is a $k$-reptile tetrahedron ( $=$ divisible into $k$ congruent tetrahedra similar to $T$ ), then $k$ is a cubic number $(\geq 8)$.
(Matousek \& Savernova 2011)
Most known 8-reptile tetrahedra are Hill tetrahedra (after Hill 1895): convex hull of $0, \quad b_{1}, \quad b_{1}+b_{2}, \quad b_{1}+b_{2}+b_{3}$, where $b_{1}, b_{2}, b_{3}$ are vectors of equal length, with equal angles $\alpha<\frac{2}{3} \pi$ between each pair

$$
\alpha=\pi / 2:
$$



Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## Tetrahedral meshes

2D: any $\triangle$ can be dissected into four similar (but smaller) triangles.
3D: If $T$ is a $k$-reptile tetrahedron (= divisible into $k$ congruent tetrahedra similar to $T$ ), then $k$ is a cubic number $(\geq 8)$.
(Matousek \& Savernova 2011)
Most known 8-reptile tetrahedra are Hill tetrahedra (after Hill 1895): convex hull of $0, \quad b_{1}, \quad b_{1}+b_{2}, \quad b_{1}+b_{2}+b_{3}$, where $b_{1}, b_{2}, b_{3}$ are vectors of equal length, with equal angles $\alpha<\frac{2}{3} \pi$ between each pair

$$
\alpha=\pi / 2: \quad \alpha=\arccos (-1 / 3):
$$



Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## Tetrahedral meshes

2D: any $\triangle$ can be dissected into four similar (but smaller) triangles.
3D: If $T$ is a $k$-reptile tetrahedron (= divisible into $k$ congruent tetrahedra similar to $T$ ), then $k$ is a cubic number $(\geq 8)$.
(Matousek \& Savernova 2011)
Most known 8-reptile tetrahedra are Hill tetrahedra (after Hill 1895): convex hull of $0, \quad b_{1}, \quad b_{1}+b_{2}, \quad b_{1}+b_{2}+b_{3}$, where $b_{1}, b_{2}, b_{3}$ are vectors of equal length, with equal angles $\alpha<\frac{2}{3} \pi$ between each pair

$$
\alpha=\pi / 2: \quad \alpha=\arccos (-1 / 3):
$$



Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## Tetrahedral meshes

2D: any $\triangle$ can be dissected into four similar (but smaller) triangles.
3D: If $T$ is a $k$-reptile tetrahedron (= divisible into $k$ congruent tetrahedra similar to $T$ ), then $k$ is a cubic number $(\geq 8)$.
(Matousek \& Savernova 2011)
Most known 8-reptile tetrahedra are Hill tetrahedra (after Hill 1895): convex hull of $0, \quad b_{1}, \quad b_{1}+b_{2}, \quad b_{1}+b_{2}+b_{3}$, where $b_{1}, b_{2}, b_{3}$ are vectors of equal length, with equal angles $\alpha<\frac{2}{3} \pi$ between each pair

$$
\alpha=\pi / 2: \quad \alpha=\arccos (-1 / 3):
$$



Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## Tetrahedral meshes

2D: any $\triangle$ can be dissected into four similar (but smaller) triangles.
3D: If $T$ is a $k$-reptile tetrahedron (= divisible into $k$ congruent tetrahedra similar to $T$ ), then $k$ is a cubic number $(\geq 8)$.
(Matousek \& Savernova 2011)
Most known 8-reptile tetrahedra are Hill tetrahedra (after Hill 1895): convex hull of $0, \quad b_{1}, \quad b_{1}+b_{2}, \quad b_{1}+b_{2}+b_{3}$, where $b_{1}, b_{2}, b_{3}$ are vectors of equal length, with equal angles $\alpha<\frac{2}{3} \pi$ between each pair

$$
\alpha=\pi / 2: \quad \alpha=\arccos (-1 / 3):
$$



Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## Tetrahedral meshes

2D: any $\triangle$ can be dissected into four similar (but smaller) triangles.
3D: If $T$ is a $k$-reptile tetrahedron (= divisible into $k$ congruent tetrahedra similar to $T$ ), then $k$ is a cubic number $(\geq 8)$.
(Matousek \& Savernova 2011)
Most known 8-reptile tetrahedra are Hill tetrahedra (after Hill 1895): convex hull of $0, \quad b_{1}, \quad b_{1}+b_{2}, \quad b_{1}+b_{2}+b_{3}$, where $b_{1}, b_{2}, b_{3}$ are vectors of equal length, with equal angles $\alpha<\frac{2}{3} \pi$ between each pair

$$
\alpha=\pi / 2: \quad \alpha=\arccos (-1 / 3):
$$



Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## Tetrahedral meshes

2D: any $\triangle$ can be dissected into four similar (but smaller) triangles.
3D: If $T$ is a $k$-reptile tetrahedron (= divisible into $k$ congruent tetrahedra similar to $T$ ), then $k$ is a cubic number $(\geq 8)$.
(Matousek \& Savernova 2011)
Most known 8-reptile tetrahedra are Hill tetrahedra (after Hill 1895): convex hull of $0, \quad b_{1}, \quad b_{1}+b_{2}, \quad b_{1}+b_{2}+b_{3}$, where $b_{1}, b_{2}, b_{3}$ are vectors of equal length, with equal angles $\alpha<\frac{2}{3} \pi$ between each pair

$$
\alpha=\pi / 2: \quad \alpha=\arccos (-1 / 3):
$$



Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## Tetrahedral meshes

2D: any $\triangle$ can be dissected into four similar (but smaller) triangles.
3D: If $T$ is a $k$-reptile tetrahedron (= divisible into $k$ congruent tetrahedra similar to $T$ ), then $k$ is a cubic number $(\geq 8)$.
(Matousek \& Savernova 2011)
Most known 8-reptile tetrahedra are Hill tetrahedra (after Hill 1895): convex hull of $0, \quad b_{1}, \quad b_{1}+b_{2}, \quad b_{1}+b_{2}+b_{3}$, where $b_{1}, b_{2}, b_{3}$ are vectors of equal length, with equal angles $\alpha<\frac{2}{3} \pi$ between each pair

$$
\alpha=\pi / 2: \quad \alpha=\arccos (-1 / 3):
$$



Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## Tetrahedral meshes

2D: any $\triangle$ can be dissected into four similar (but smaller) triangles.
3D: If $T$ is a $k$-reptile tetrahedron (= divisible into $k$ congruent tetrahedra similar to $T$ ), then $k$ is a cubic number $(\geq 8)$.
(Matousek \& Savernova 2011)
Most known 8-reptile tetrahedra are Hill tetrahedra (after Hill 1895): convex hull of $0, \quad b_{1}, \quad b_{1}+b_{2}, \quad b_{1}+b_{2}+b_{3}$, where $b_{1}, b_{2}, b_{3}$ are vectors of equal length, with equal angles $\alpha<\frac{2}{3} \pi$ between each pair

$$
\alpha=\pi / 2: \quad \alpha=\arccos (-1 / 3):
$$


(special cases of Hill tetrahedra)
Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## Tetrahedral meshes

2D: any $\triangle$ can be dissected into four similar (but smaller) triangles.
3D: If $T$ is a $k$-reptile tetrahedron (= divisible into $k$ congruent tetrahedra similar to $T$ ), then $k$ is a cubic number $(\geq 8)$.
(Matousek \& Savernova 2011)
Most known 8-reptile tetrahedra are Hill tetrahedra (after Hill 1895): convex hull of $0, \quad b_{1}, \quad b_{1}+b_{2}, \quad b_{1}+b_{2}+b_{3}$, where $b_{1}, b_{2}, b_{3}$ are vectors of equal length, with equal angles $\alpha<\frac{2}{3} \pi$ between each pair

$$
\alpha=\pi / 2: \quad \alpha=\arccos (-1 / 3): \quad \text { non-Hill: }
$$


(special cases of Hill tetrahedra)

(Liu \& Joe 1994)
Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## Tetrahedral meshes

2D: any $\triangle$ can be dissected into four similar (but smaller) triangles.
3D: If $T$ is a $k$-reptile tetrahedron (= divisible into $k$ congruent tetrahedra similar to $T$ ), then $k$ is a cubic number $(\geq 8)$.
(Matousek \& Savernova 2011)
Most known 8-reptile tetrahedra are Hill tetrahedra (after Hill 1895): convex hull of $0, \quad b_{1}, \quad b_{1}+b_{2}, \quad b_{1}+b_{2}+b_{3}$, where $b_{1}, b_{2}, b_{3}$ are vectors of equal length, with equal angles $\alpha<\frac{2}{3} \pi$ between each pair

$$
\alpha=\pi / 2: \quad \alpha=\arccos (-1 / 3): \quad \text { non-Hill: }
$$


(special cases of Hill tetrahedra)

(LiU \& Joe 1994)

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## Tetrahedral meshes

2D: any $\triangle$ can be dissected into four similar (but smaller) triangles.
3D: If $T$ is a $k$-reptile tetrahedron (= divisible into $k$ congruent tetrahedra similar to $T$ ), then $k$ is a cubic number $(\geq 8)$.
(Matousek \& Savernova 2011)
Most known 8-reptile tetrahedra are Hill tetrahedra (after Hill 1895): convex hull of $0, \quad b_{1}, \quad b_{1}+b_{2}, \quad b_{1}+b_{2}+b_{3}$, where $b_{1}, b_{2}, b_{3}$ are vectors of equal length, with equal angles $\alpha<\frac{2}{3} \pi$ between each pair

$$
\alpha=\pi / 2: \quad \alpha=\arccos (-1 / 3): \quad \text { non-Hill: }
$$


(special cases of Hill tetrahedra)

(LiU \& Joe 1994)

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## Tetrahedral meshes

2D: any $\triangle$ can be dissected into four similar (but smaller) triangles.
3D: If $T$ is a $k$-reptile tetrahedron (= divisible into $k$ congruent tetrahedra similar to $T$ ), then $k$ is a cubic number $(\geq 8)$.
(Matousek \& Savernova 2011)
Most known 8-reptile tetrahedra are Hill tetrahedra (after Hill 1895): convex hull of $0, \quad b_{1}, \quad b_{1}+b_{2}, \quad b_{1}+b_{2}+b_{3}$, where $b_{1}, b_{2}, b_{3}$ are vectors of equal length, with equal angles $\alpha<\frac{2}{3} \pi$ between each pair

$$
\alpha=\pi / 2: \quad \alpha=\arccos (-1 / 3): \quad \text { non-Hill: }
$$


(special cases of Hill tetrahedra)

(Liu \& Joe 1994)

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## Tetrahedral meshes

2D: any $\triangle$ can be dissected into four similar (but smaller) triangles.
3D: If $T$ is a $k$-reptile tetrahedron (= divisible into $k$ congruent tetrahedra similar to $T$ ), then $k$ is a cubic number $(\geq 8)$.
(Matousek \& Savernova 2011)
Most known 8-reptile tetrahedra are Hill tetrahedra (after Hill 1895): convex hull of $0, \quad b_{1}, \quad b_{1}+b_{2}, \quad b_{1}+b_{2}+b_{3}$, where $b_{1}, b_{2}, b_{3}$ are vectors of equal length, with equal angles $\alpha<\frac{2}{3} \pi$ between each pair

$$
\alpha=\pi / 2: \quad \alpha=\arccos (-1 / 3): \quad \text { non-Hill: }
$$


(special cases of Hill tetrahedra)
(LiU \& Joe 1994)
Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## Tetrahedral meshes

2D: any $\triangle$ can be dissected into four similar (but smaller) triangles.
3D: If $T$ is a $k$-reptile tetrahedron (= divisible into $k$ congruent tetrahedra similar to $T$ ), then $k$ is a cubic number $(\geq 8)$.
(Matousek \& Savernova 2011)
Most known 8-reptile tetrahedra are Hill tetrahedra (after Hill 1895): convex hull of $0, \quad b_{1}, \quad b_{1}+b_{2}, \quad b_{1}+b_{2}+b_{3}$, where $b_{1}, b_{2}, b_{3}$ are vectors of equal length, with equal angles $\alpha<\frac{2}{3} \pi$ between each pair

$$
\alpha=\pi / 2: \quad \alpha=\arccos (-1 / 3):
$$ 1

$\leftarrow \sqrt{2}$

(special cases of Hill tetrahedra)

(LiU \& Joe 1994)
Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## Tetrahedral meshes

2D: any $\triangle$ can be dissected into four similar (but smaller) triangles.
3D: If $T$ is a $k$-reptile tetrahedron (= divisible into $k$ congruent tetrahedra similar to $T$ ), then $k$ is a cubic number $(\geq 8)$.
(Matousek \& Savernova 2011)
Most known 8-reptile tetrahedra are Hill tetrahedra (after Hill 1895): convex hull of $0, \quad b_{1}, \quad b_{1}+b_{2}, \quad b_{1}+b_{2}+b_{3}$, where $b_{1}, b_{2}, b_{3}$ are vectors of equal length, with equal angles $\alpha<\frac{2}{3} \pi$ between each pair

$$
\alpha=\pi / 2: \quad \alpha=\arccos (-1 / 3):
$$

$$
1
$$



$$
1
$$


$\frac{2}{3} \sqrt{3}$
(special cases of Hill tetrahedra)

(Liu \& Joe 1994)
Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## Tetrahedral meshes

2D: any $\triangle$ can be dissected into four similar (but smaller) triangles.
3D: If $T$ is a $k$-reptile tetrahedron (= divisible into $k$ congruent tetrahedra similar to $T$ ), then $k$ is a cubic number $(\geq 8)$.
(Matousek \& Savernova 2011)
Most known 8-reptile tetrahedra are Hill tetrahedra (after Hill 1895): convex hull of $0, \quad b_{1}, \quad b_{1}+b_{2}, \quad b_{1}+b_{2}+b_{3}$, where $b_{1}, b_{2}, b_{3}$ are vectors of equal length, with equal angles $\alpha<\frac{2}{3} \pi$ between each pair

$$
\alpha=\pi / 2: \quad \alpha=\arccos (-1 / 3):
$$

$$
1
$$


$<$

$$
1
$$

$\frac{2}{3} \sqrt{3}$
(special cases of Hill tetrahedra)
non-Hill:


Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## Tetrahedral meshes

2D: any $\triangle$ can be dissected into four similar (but smaller) triangles.
3D: If $T$ is a $k$-reptile tetrahedron (= divisible into $k$ congruent tetrahedra similar to $T$ ), then $k$ is a cubic number $(\geq 8)$.
(Matousek \& Savernova 2011)
Most known 8-reptile tetrahedra are Hill tetrahedra (after Hill 1895): convex hull of $0, \quad b_{1}, \quad b_{1}+b_{2}, \quad b_{1}+b_{2}+b_{3}$, where $b_{1}, b_{2}, b_{3}$ are vectors of equal length, with equal angles $\alpha<\frac{2}{3} \pi$ between each pair

$$
\alpha=\pi / 2: \quad \quad \alpha=\arccos (-1 / 3)
$$

$$
1
$$



$$
1
$$

$\frac{2}{3} \sqrt{3}$

$\sqrt{2}$
(special cases of Hill tetrahedra)
non-Hill:


(LiU \& Joe 1994)
Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## Tetrahedral meshes: Hill tetrahedra $\alpha \neq \pi / 2$

Only one way to subdivide into 8 equal, similar tetrahedra.


Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## Tetrahedral meshes: Hill tetrahedra $\alpha \neq \pi / 2$

Only one way to subdivide into 8 equal, similar tetrahedra.
Four subtetrahedra share a face with only one other $\rightarrow$ no face-continuous traversal


## Tetrahedral meshes: Hill tetrahedra $\alpha \neq \pi / 2$

Only one way to subdivide into 8 equal, similar tetrahedra.
Four subtetrahedra share a face with only one other $\rightarrow$ no face-continuous traversal


## Tetrahedral meshes: Hill tetrahedra $\alpha \neq \pi / 2$

Only one way to subdivide into 8 equal, similar tetrahedra.
Four subtetrahedra share a face with only one other $\rightarrow$ no face-continuous traversal

$X_{f}, X_{b}$ : subtetrahedron of $X$ in the front, back
Palindromic implies: $\left(A_{f} \prec A_{b}\right)=\left(B_{b} \prec B_{f}\right)=\left(C_{f} \prec C_{b}\right)$

## Tetrahedral meshes: Hill tetrahedra $\alpha \neq \pi / 2$

Only one way to subdivide into 8 equal, similar tetrahedra.
Four subtetrahedra share a face with only one other $\rightarrow$ no face-continuous traversal

$X_{f}, X_{b}$ : subtetrahedron of $X$ in the front, back Palindromic implies: $\left(A_{f} \prec A_{b}\right)=\left(B_{b} \prec B_{f}\right)=\left(C_{f} \prec C_{b}\right)$
$\rightarrow$ between traversals of $A$ and $C$, stack with vertices of common edge must be reversed $\rightarrow B$ must be traversed between $A$ and $C$

## Tetrahedral meshes: Hill tetrahedra $\alpha \neq \pi / 2$

Only one way to subdivide into 8 equal, similar tetrahedra.
Four subtetrahedra share a face with only one other $\rightarrow$ no face-continuous traversal

$\rightarrow$ between traversals of $A$ and $C$, stack with vertices of common edge must be reversed
$\rightarrow B$ must be traversed between $A$ and $C$
$\rightarrow$ combine conditions on all edges $\rightarrow \zeta$ no palindromic traversal possible
(still hope for: quasi-face-continuous, homodromic traversal)
Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## Tetrahedral meshes: liujoedron bisection scheme

## Hill tetrahedron $\alpha=\pi / 2$ ( $1 / 6$ cube) Liujoedron ( $1 / 12$ cube) Half-liujoedron ( $1 / 24$ cube)


quasi-face-continuous, homodromic

## Tetrahedral meshes: liujoedron bisection scheme

## Hill tetrahedron $\alpha=\pi / 2$ ( $1 / 6$ cube) Liujoedron ( $1 / 12$ cube) Half-liujoedron ( $1 / 24$ cube)


quasi-face-continuous, homodromic


Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## Tetrahedral meshes: liujoedron bisection scheme



Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## Tetrahedral meshes: liujoedron bisection scheme

$$
\text { Hill tetrahedron } \alpha=\pi / 2 \text { ( } 1 / 6 \text { cube) } \quad \text { Liujoedron ( } 1 / 12 \text { cube) } \quad \text { Half-liujoedron (1/24 cube) }
$$


quasi-face-continuous, homodromic


Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## Tetrahedral meshes: liujoedron bisection scheme

## Hill tetrahedron $\alpha=\pi / 2$ ( $1 / 6$ cube) Liujoedron ( $1 / 12$ cube) Half-liujoedron ( $1 / 24$ cube)


quasi-face-continuous, homodromic


Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## Tetrahedral meshes: liujoedron bisection scheme

## Hill tetrahedron $\alpha=\pi / 2$ ( $1 / 6$ cube) Liujoedron ( $1 / 12$ cube) Half-liujoedron ( $1 / 24$ cube)


quasi-face-continuous, homodromic

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## Tetrahedral meshes: liujoedron bisection scheme


quasi-face-continuous, homodromic

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## Tetrahedral meshes: liujoedron bisection scheme


quasi-face-continuous, homodromic

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## Tetrahedral meshes: liujoedron bisection scheme

## Hill tetrahedron $\alpha=\pi / 2$ ( $1 / 6$ cube) Liujoedron ( $1 / 12$ cube) Half-liujoedron ( $1 / 24$ cube)



Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## Tetrahedral meshes: liujoedron bisection scheme

$$
\text { Hill tetrahedron } \alpha=\pi / 2 \text { ( } 1 / 6 \text { cube) } \quad \text { Liujoedron ( } 1 / 12 \text { cube) } \quad \text { Half-liujoedron (1/24 cube) }
$$



Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## Tetrahedral meshes: liujoedron bisection scheme


quasi-face-continuous, homodromic


Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## Summary: results on octree traversals



Open problems:

- insightful proof of negative results on cubes
- meaningful surface-to-volume measures-and how to compute them?
- what tetrahedra are reptiles?
- (traversals for $1 / 6,1 / 12,1 / 24$ cube tetrahedra that do not follow bisection scheme?)
- hypercubes in $>3$ dimensions?
- simplexes in $>3$ dimensions?
- accommodating adaptive cell shapes?


## Summary: results on octree traversals



Open problems:

- insightful proof of negative results on cubes
- meaningful surface-to-volume measures-and how to compute them?
- what tetrahedra are reptiles?
- (traversals for $1 / 6,1 / 12,1 / 24$ cube tetrahedra that do not follow bisection scheme?)
- hypercubes in $>3$ dimensions?
- simplexes in $>3$ dimensions?
- accommodating adaptive cell shapes?

THANK YOU FOR YOUR ATTENTION
Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/


Solid object with heat sources and sinks on boundary; simulate heat distribution on vertices, flow through faces by repeatedly iterating over all cells.

Requires:

- storing vertex/edge/face values between iterations
- repeated access to v/e/faces on boundaries between cells
- adaptive refinement of the mesh


Solid object with heat sources and sinks on boundary; simulate heat distribution on vertices, flow through faces by repeatedly iterating over all cells.

Requires:

- storing vertex/edge/face values between iterations
- repeated access to $\mathrm{v} / \mathrm{e} /$ faces on boundaries between cells
- adaptive refinement of the mesh

Weinzierl 2009:
current vertex/edge/face values popped from input stack when first visited; new vertex/edge/face values pushed on output stack when last visited; alternate forward and reverse iterations (stacks swap roles);
between first and last visits to a vertex/edge/face, value stored on intermediate stacks:

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/


Solid object with heat sources and sinks on boundary; simulate heat distribution on vertices, flow through faces by repeatedly iterating over all cells.

Requires:

- storing vertex/edge/face values between iterations
- repeated access to v/e/faces on boundaries between cells
- adaptive refinement of the mesh

Weinzierl 2009:
current vertex/edge/face values popped from input stack when first visited; new vertex/edge/face values pushed on output stack when last visited; alternate forward and reverse iterations (stacks swap roles);
between first and last visits to a vertex/edge/face, value stored on intermediate stacks:

- two stacks for horizontal faces (one for odd heights, one for even heights)

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## Bonus slide: 3D Peano traversal



Solid object with heat sources and sinks on boundary; simulate heat distribution on vertices, flow through faces by repeatedly iterating over all cells.

Requires:

- storing vertex/edge/face values between iterations
- repeated access to v/e/faces on boundaries between cells
- adaptive refinement of the mesh

Weinzierl 2009:
current vertex/edge/face values popped from input stack when first visited; new vertex/edge/face values pushed on output stack when last visited; alternate forward and reverse iterations (stacks swap roles);
between first and last visits to a vertex/edge/face, value stored on intermediate stacks:

- two stacks for horizontal faces (one for odd heights, one for even heights)
- two stacks for left/right faces (one for odd coordinates, one for even coordinates)

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## Bonus slide: 3D Peano traversal



Solid object with heat sources and sinks on boundary; simulate heat distribution on vertices, flow through faces by repeatedly iterating over all cells.

Requires:

- storing vertex/edge/face values between iterations
- repeated access to $\mathrm{v} / \mathrm{e} /$ faces on boundaries between cells
- adaptive refinement of the mesh

Weinzierl 2009:
current vertex/edge/face values popped from input stack when first visited; new vertex/edge/face values pushed on output stack when last visited; alternate forward and reverse iterations (stacks swap roles);
between first and last visits to a vertex/edge/face, value stored on intermediate stacks:

- two stacks for horizontal faces (one for odd heights, one for even heights)
- two stacks for left/right faces (one for odd coordinates, one for even coordinates)
- two stacks for front/back faces (one for odd coordinates, one for even coordinates)

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/


Solid object with heat sources and sinks on boundary; simulate heat distribution on vertices, flow through faces by repeatedly iterating over all cells.

Requires:

- storing vertex/edge/face values between iterations
- repeated access to $\mathrm{v} / \mathrm{e} /$ faces on boundaries between cells
- adaptive refinement of the mesh

Weinzierl 2009:
current vertex/edge/face values popped from input stack when first visited; new vertex/edge/face values pushed on output stack when last visited; alternate forward and reverse iterations (stacks swap roles);
between first and last visits to a vertex/edge/face, value stored on intermediate stacks:

- two stacks for horizontal faces (one for odd heights, one for even heights)
- two stacks for left/right faces (one for odd coordinates, one for even coordinates)
- two stacks for front/back faces (one for odd coordinates, one for even coordinates)

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/


Solid object with heat sources and sinks on boundary; simulate heat distribution on vertices, flow through faces by repeatedly iterating over all cells.

Requires:

- storing vertex/edge/face values between iterations
- repeated access to $\mathrm{v} / \mathrm{e} /$ faces on boundaries between cells
- adaptive refinement of the mesh

Weinzierl 2009:
current vertex/edge/face values popped from input stack when first visited; new vertex/edge/face values pushed on output stack when last visited; alternate forward and reverse iterations (stacks swap roles);
between first and last visits to a vertex/edge/face, value stored on intermediate stacks:

- two stacks for horizontal faces (one for odd heights, one for even heights)
- two stacks for left/right faces (one for odd coordinates, one for even coordinates)
- two stacks for front/back faces (one for odd coordinates, one for even coordinates)

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/


Solid object with heat sources and sinks on boundary; simulate heat distribution on vertices, flow through faces by repeatedly iterating over all cells.

Requires:

- storing vertex/edge/face values between iterations
- repeated access to $\mathrm{v} / \mathrm{e} /$ faces on boundaries between cells
- adaptive refinement of the mesh

Weinzierl 2009:
current vertex/edge/face values popped from input stack when first visited; new vertex/edge/face values pushed on output stack when last visited; alternate forward and reverse iterations (stacks swap roles);
between first and last visits to a vertex/edge/face, value stored on intermediate stacks:

- two stacks for horizontal faces (one for odd heights, one for even heights)
- two stacks for left/right faces (one for odd coordinates, one for even coordinates)
- two stacks for front/back faces (one for odd coordinates, one for even coordinates)

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/


Solid object with heat sources and sinks on boundary; simulate heat distribution on vertices, flow through faces by repeatedly iterating over all cells.

Requires:

- storing vertex/edge/face values between iterations
- repeated access to $\mathrm{v} / \mathrm{e} /$ faces on boundaries between cells
- adaptive refinement of the mesh

Weinzierl 2009:
current vertex/edge/face values popped from input stack when first visited; new vertex/edge/face values pushed on output stack when last visited; alternate forward and reverse iterations (stacks swap roles);
between first and last visits to a vertex/edge/face, value stored on intermediate stacks:

- two stacks for horizontal faces (one for odd heights, one for even heights)
- two stacks for left/right faces (one for odd coordinates, one for even coordinates)
- two stacks for front/back faces (one for odd coordinates, one for even coordinates)

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/


Solid object with heat sources and sinks on boundary; simulate heat distribution on vertices, flow through faces by repeatedly iterating over all cells.

Requires:

- storing vertex/edge/face values between iterations
- repeated access to $\mathrm{v} / \mathrm{e} /$ faces on boundaries between cells
- adaptive refinement of the mesh

Weinzierl 2009:
current vertex/edge/face values popped from input stack when first visited; new vertex/edge/face values pushed on output stack when last visited; alternate forward and reverse iterations (stacks swap roles);
between first and last visits to a vertex/edge/face, value stored on intermediate stacks:

- two stacks for horizontal faces (one for odd heights, one for even heights)
- two stacks for left/right faces (one for odd coordinates, one for even coordinates)
- two stacks for front/back faces (one for odd coordinates, one for even coordinates)

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/


Solid object with heat sources and sinks on boundary; simulate heat distribution on vertices, flow through faces by repeatedly iterating over all cells.

Requires:

- storing vertex/edge/face values between iterations
- repeated access to $\mathrm{v} / \mathrm{e} /$ faces on boundaries between cells
- adaptive refinement of the mesh

Weinzierl 2009:
current vertex/edge/face values popped from input stack when first visited; new vertex/edge/face values pushed on output stack when last visited; alternate forward and reverse iterations (stacks swap roles);
between first and last visits to a vertex/edge/face, value stored on intermediate stacks:

- two stacks for horizontal faces (one for odd heights, one for even heights)
- two stacks for left/right faces (one for odd coordinates, one for even coordinates)
- two stacks for front/back faces (one for odd coordinates, one for even coordinates)

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/


Solid object with heat sources and sinks on boundary; simulate heat distribution on vertices, flow through faces by repeatedly iterating over all cells.

Requires:

- storing vertex/edge/face values between iterations
- repeated access to $\mathrm{v} / \mathrm{e} /$ faces on boundaries between cells
- adaptive refinement of the mesh

Weinzierl 2009:
current vertex/edge/face values popped from input stack when first visited; new vertex/edge/face values pushed on output stack when last visited; alternate forward and reverse iterations (stacks swap roles);
between first and last visits to a vertex/edge/face, value stored on intermediate stacks:

- two stacks for horizontal faces (one for odd heights, one for even heights)
- two stacks for left/right faces (one for odd coordinates, one for even coordinates)
- two stacks for front/back faces (one for odd coordinates, one for even coordinates)

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/


Solid object with heat sources and sinks on boundary; simulate heat distribution on vertices, flow through faces by repeatedly iterating over all cells.

Requires:

- storing vertex/edge/face values between iterations
- repeated access to $\mathrm{v} / \mathrm{e} /$ faces on boundaries between cells
- adaptive refinement of the mesh

Weinzierl 2009:
current vertex/edge/face values popped from input stack when first visited; new vertex/edge/face values pushed on output stack when last visited; alternate forward and reverse iterations (stacks swap roles);
between first and last visits to a vertex/edge/face, value stored on intermediate stacks:

- two stacks for horizontal faces (one for odd heights, one for even heights)
- two stacks for left/right faces (one for odd coordinates, one for even coordinates)
- two stacks for front/back faces (one for odd coordinates, one for even coordinates)

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/


Solid object with heat sources and sinks on boundary; simulate heat distribution on vertices, flow through faces by repeatedly iterating over all cells.

Requires:

- storing vertex/edge/face values between iterations
- repeated access to $\mathrm{v} / \mathrm{e} /$ faces on boundaries between cells
- adaptive refinement of the mesh

Weinzierl 2009:
current vertex/edge/face values popped from input stack when first visited; new vertex/edge/face values pushed on output stack when last visited; alternate forward and reverse iterations (stacks swap roles);
between first and last visits to a vertex/edge/face, value stored on intermediate stacks:

- two stacks for horizontal faces (one for odd heights, one for even heights)
- two stacks for left/right faces (one for odd coordinates, one for even coordinates)
- two stacks for front/back faces (one for odd coordinates, one for even coordinates)

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/


Solid object with heat sources and sinks on boundary; simulate heat distribution on vertices, flow through faces by repeatedly iterating over all cells.

Requires:

- storing vertex/edge/face values between iterations
- repeated access to $\mathrm{v} / \mathrm{e} /$ faces on boundaries between cells
- adaptive refinement of the mesh

Weinzierl 2009:
current vertex/edge/face values popped from input stack when first visited; new vertex/edge/face values pushed on output stack when last visited; alternate forward and reverse iterations (stacks swap roles);
between first and last visits to a vertex/edge/face, value stored on intermediate stacks:

- two stacks for horizontal faces (one for odd heights, one for even heights)
- two stacks for left/right faces (one for odd coordinates, one for even coordinates)
- two stacks for front/back faces (one for odd coordinates, one for even coordinates)

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/


Solid object with heat sources and sinks on boundary; simulate heat distribution on vertices, flow through faces by repeatedly iterating over all cells.

Requires:

- storing vertex/edge/face values between iterations
- repeated access to $\mathrm{v} / \mathrm{e} /$ faces on boundaries between cells
- adaptive refinement of the mesh

Weinzierl 2009:
current vertex/edge/face values popped from input stack when first visited; new vertex/edge/face values pushed on output stack when last visited; alternate forward and reverse iterations (stacks swap roles);
between first and last visits to a vertex/edge/face, value stored on intermediate stacks:

- two stacks for horizontal faces (one for odd heights, one for even heights)
- two stacks for left/right faces (one for odd coordinates, one for even coordinates)
- two stacks for front/back faces (one for odd coordinates, one for even coordinates)

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/


Solid object with heat sources and sinks on boundary; simulate heat distribution on vertices, flow through faces by repeatedly iterating over all cells.

Requires:

- storing vertex/edge/face values between iterations
- repeated access to $\mathrm{v} / \mathrm{e} /$ faces on boundaries between cells
- adaptive refinement of the mesh

Weinzierl 2009:
current vertex/edge/face values popped from input stack when first visited; new vertex/edge/face values pushed on output stack when last visited; alternate forward and reverse iterations (stacks swap roles);
between first and last visits to a vertex/edge/face, value stored on intermediate stacks:

- two stacks for horizontal faces (one for odd heights, one for even heights)
- two stacks for left/right faces (one for odd coordinates, one for even coordinates)
- two stacks for front/back faces (one for odd coordinates, one for even coordinates)

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/


Solid object with heat sources and sinks on boundary; simulate heat distribution on vertices, flow through faces by repeatedly iterating over all cells.

Requires:

- storing vertex/edge/face values between iterations
- repeated access to $\mathrm{v} / \mathrm{e} /$ faces on boundaries between cells
- adaptive refinement of the mesh

Weinzierl 2009:
current vertex/edge/face values popped from input stack when first visited; new vertex/edge/face values pushed on output stack when last visited; alternate forward and reverse iterations (stacks swap roles);
between first and last visits to a vertex/edge/face, value stored on intermediate stacks:

- two stacks for horizontal faces (one for odd heights, one for even heights)
- two stacks for left/right faces (one for odd coordinates, one for even coordinates)
- two stacks for front/back faces (one for odd coordinates, one for even coordinates)

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/


Solid object with heat sources and sinks on boundary; simulate heat distribution on vertices, flow through faces by repeatedly iterating over all cells.

Requires:

- storing vertex/edge/face values between iterations
- repeated access to $\mathrm{v} / \mathrm{e} /$ faces on boundaries between cells
- adaptive refinement of the mesh

Weinzierl 2009:
current vertex/edge/face values popped from input stack when first visited; new vertex/edge/face values pushed on output stack when last visited; alternate forward and reverse iterations (stacks swap roles);
between first and last visits to a vertex/edge/face, value stored on intermediate stacks:

- two stacks for horizontal faces (one for odd heights, one for even heights)
- two stacks for left/right faces (one for odd coordinates, one for even coordinates)
- two stacks for front/back faces (one for odd coordinates, one for even coordinates)

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/


Solid object with heat sources and sinks on boundary; simulate heat distribution on vertices, flow through faces by repeatedly iterating over all cells.

Requires:

- storing vertex/edge/face values between iterations
- repeated access to $\mathrm{v} / \mathrm{e} /$ faces on boundaries between cells
- adaptive refinement of the mesh

Weinzierl 2009:
current vertex/edge/face values popped from input stack when first visited; new vertex/edge/face values pushed on output stack when last visited; alternate forward and reverse iterations (stacks swap roles);
between first and last visits to a vertex/edge/face, value stored on intermediate stacks:

- two stacks for horizontal faces (one for odd heights, one for even heights)
- two stacks for left/right faces (one for odd coordinates, one for even coordinates)
- two stacks for front/back faces (one for odd coordinates, one for even coordinates)

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/


Solid object with heat sources and sinks on boundary; simulate heat distribution on vertices, flow through faces by repeatedly iterating over all cells.

Requires:

- storing vertex/edge/face values between iterations
- repeated access to $\mathrm{v} / \mathrm{e} /$ faces on boundaries between cells
- adaptive refinement of the mesh

Weinzierl 2009:
current vertex/edge/face values popped from input stack when first visited; new vertex/edge/face values pushed on output stack when last visited; alternate forward and reverse iterations (stacks swap roles);
between first and last visits to a vertex/edge/face, value stored on intermediate stacks:

- two stacks for horizontal faces (one for odd heights, one for even heights)
- two stacks for left/right faces (one for odd coordinates, one for even coordinates)
- two stacks for front/back faces (one for odd coordinates, one for even coordinates)

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/


Solid object with heat sources and sinks on boundary; simulate heat distribution on vertices, flow through faces by repeatedly iterating over all cells.

Requires:

- storing vertex/edge/face values between iterations
- repeated access to $\mathrm{v} / \mathrm{e} /$ faces on boundaries between cells
- adaptive refinement of the mesh

Weinzierl 2009:
current vertex/edge/face values popped from input stack when first visited; new vertex/edge/face values pushed on output stack when last visited; alternate forward and reverse iterations (stacks swap roles);
between first and last visits to a vertex/edge/face, value stored on intermediate stacks:

- two stacks for horizontal faces (one for odd heights, one for even heights)
- two stacks for left/right faces (one for odd coordinates, one for even coordinates)
- two stacks for front/back faces (one for odd coordinates, one for even coordinates)

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

## Bonus slide: 3D Peano traversal



- cache-efficient!
- adaptive refinement $=$ some pushes on stacks: no complicated vertex/edge/face index!
- easy to parallelize! each processor gets part of traversal (only diff: values for variables on boundary with other processor are read/written to different stacks)

Weinzierl 2009:
current vertex/edge/face values popped from input stack when first visited; new vertex/edge/face values pushed on output stack when last visited; alternate forward and reverse iterations (stacks swap roles);
between first and last visits to a vertex/edge/face, value stored on intermediate stacks:

- two stacks for horizontal faces (one for odd heights, one for even heights)
- two stacks for left/right faces (one for odd coordinates, one for even coordinates)
- two stacks for front/back faces (one for odd coordinates, one for even coordinates)

Herman Haverkort, TU Eindhoven, http://www.spacefillingcurves.net/

