# Space-filling curves for 3D mesh traversals

Michael Bader TU München Herman Haverkort TU Eindhoven Tobias Weinzierl Durham University



For example: plate with heat sources and sinks at subset of vertices; compute steady-state heat distribution and flow.



For example: plate with heat sources and sinks at subset of vertices; compute steady-state heat distribution and flow.









Hilbert order













































Desiderata:

- octree traversal (cubes/simplices recursively subdivided into 8 parts)
- face-continuous: consecutive cells share a face
- palindromic: for each pair of adjacent cubes/simplices  $C_1$  and  $C_2$ , second traversal of common face is reverse of first traversal



Desiderata:

- octree traversal (cubes/simplices recursively subdivided into 8 parts)
- face-continuous: consecutive cells share a face
- *palindromic*: for every **set** of cubes/simplices sharing a common face/**edge**, **every subseq.** traversal of common face/**edge** is reverse of **previous** traversal



Desiderata:

- octree traversal (cubes/simplices recursively subdivided into 8 parts)
- face-continuous: consecutive cells share a face
- *palindromic*: for every **set** of cubes/simplices sharing a common face/**edge**, **every subseq.** traversal of common face/**edge** is reverse of **previous** traversal



Desiderata:

- octree traversal (cubes/simplices recursively subdivided into 8 parts)
- face-continuous: consecutive cells share a face
- *palindromic*: for every **set** of cubes/simplices sharing a common face/**edge**, **every subseq.** traversal of common face/**edge** is reverse of **previous** traversal



Desired: palindromic, face-continuous octree traversal

 $\operatorname{BADER}$  2013: finds no solution within a restricted framework

Desired: palindromic, face-continuous octree traversal

BADER 2013: finds no solution within a restricted framework WEINZIERL (PERS. CONF.):



Desired: palindromic, face-continuous octree traversal

BADER 2013: finds no solution within a restricted framework WEINZIERL (PERS. CONF.):



Desired: palindromic, face-continuous octree traversal

BADER 2013: finds no solution within a restricted framework WEINZIERL (PERS. CONF.):


Desired: palindromic, face-continuous octree traversal

BADER 2013: finds no solution within a restricted framework WEINZIERL (PERS. CONF.):



Brute-force search  $4 \times 4 \times 4$  finds solutions, but all self-similar recursive expansions fail. Brute-force search  $8 \times 8 \times 8$  is infeasible (and would still generate false positives).

Generate  $S = \text{all } 4 \times 4 \times 4$  traversals that:

- traverse octants one by one; <-
- are face-continuous;
- have matching patterns on opposite sides of each of the twelve interior  $2 \times 2$ -faces.

or for for



Generate  $S = \text{all } 4 \times 4 \times 4$  traversals that:

- $\bullet$  traverse octants one by one;  $\blacktriangleleft$
- are face-continuous;
- have matching patterns on opposite sides of each of the twelve interior  $2 \times 2$ -faces.

or for for

Finds 8384, for example:



Generate  $S = \text{all } 4 \times 4 \times 4$  traversals that:

- $\bullet$  traverse octants one by one;  $\blacktriangleleft$
- are face-continuous;
- have matching patterns on opposite sides of each of the twelve interior  $2 \times 2$ -faces.

or for for

Finds 8384, for example:



Generate  $S = \text{all } 4 \times 4 \times 4$  traversals that:

- $\bullet$  traverse octants one by one;  $\blacktriangleleft$
- are face-continuous;
- have matching patterns on opposite sides of each of the twelve interior  $2 \times 2$ -faces.

or for for

Finds 8384, for example:

Identify face patterns by id  $\in \{0, ..., 255\}$ 

Generate  $S = \text{all } 4 \times 4 \times 4$  traversals that:

- $\bullet$  traverse octants one by one;  $\blacktriangleleft$
- are face-continuous;
- have matching patterns on opposite sides of each of the twelve interior  $2 \times 2$ -faces.

for for for

Finds 8384, for example:

Identify face patterns by id  $\in \{0, ..., 255\}$ 

Generate  $S = \text{all } 4 \times 4 \times 4$  traversals that:

- $\bullet$  traverse octants one by one;  $\blacktriangleleft$
- are face-continuous;
- have matching patterns on opposite sides of each of the twelve interior  $2 \times 2$ -faces.

for for for

Finds 8384, for example:

S' =48 × 8384 = 402432 traversals obtained by reflections and rotations



Identify face patterns by id  $\in \{0, ..., 255\}$ 

Generate  $S = \text{all } 4 \times 4 \times 4$  traversals that:

- $\bullet$  traverse octants one by one;  $\blacktriangleleft$
- are face-continuous;
- have matching patterns on opposite sides of each of the twelve interior  $2 \times 2$ -faces.

for for for

Finds 8384, for example:

S' =48 × 8384 = 402 432 traversals obtained by reflections and rotations



Identify face patterns by id  $\in \{0, ..., 255\}$ 

Try to refine  $4\times4\times4$  traversals from S into  $8\times8\times8$  traversals by replacing  $2\times2\times2$  traversals in octants by  $4\times4\times4$  traversals from S'

Generate  $S = \text{all } 4 \times 4 \times 4$  traversals that:

- $\bullet$  traverse octants one by one;  $\blacktriangleleft$
- are face-continuous;
- have matching patterns on opposite sides of each of the twelve interior  $2 \times 2$ -faces.

for for for

Finds 8384, for example:

S' = 48  $\times$  8384 = 402432 traversals obtained by reflections and rotations



Identify face patterns by id  $\in \{0, ..., 255\}$ 

For each traversal from S:

exhaustive search of all choices of patterns  $\in \{0, ..., 255\}$  for 12 interior faces:

Generate S =all  $4 \times 4 \times 4$  traversals that:

- $\bullet$  traverse octants one by one;  $\blacktriangleleft$
- are face-continuous;
- have matching patterns on opposite sides of each of the twelve interior  $2 \times 2$ -faces.

or for for

Finds 8384, for example:

 $S' = $$48 \times 8384 = 402\,432$$$traversals obtained by$$$reflections and rotations$ 



Identify face patterns by id  $\in \{0, ..., 255\}$ 

For each traversal from S:

exhaustive search of all choices of patterns  $\in \{0,...,255\}$  for 12 interior faces: verify for each octant:

S' contains  $4\times 4\times 4$  traversal with matching octant order and face patterns

Generate S =all  $4 \times 4 \times 4$  traversals that:

- $\bullet$  traverse octants one by one;  $\blacktriangleleft$
- are face-continuous;
- have matching patterns on opposite sides of each of the twelve interior  $2 \times 2$ -faces.

for for for





exhaustive search of all choices of patterns  $\in \{0,...,255\}$  for 12 interior faces: verify for each octant:

S' contains  $4\times 4\times 4$  traversal with matching octant order and face patterns

Generate S =all  $4 \times 4 \times 4$  traversals that:

- $\bullet$  traverse octants one by one;  $\blacktriangleleft$
- are face-continuous;
- have matching patterns on opposite sides of each of the twelve interior  $2 \times 2$ -faces.

for for for





exhaustive search of all choices of patterns  $\in \{0,...,255\}$  for 12 interior faces: verify for each octant:

S' contains  $4\times 4\times 4$  traversal with matching octant order and face patterns

Generate S =all  $4 \times 4 \times 4$  traversals that:

- $\bullet$  traverse octants one by one;  $\blacktriangleleft$
- are face-continuous;
- have matching patterns on opposite sides of each of the twelve interior  $2 \times 2$ -faces.

for for for



3D Peano curve (applied by WEINZIERL 2009):



Desired: palindromic, face-continuous octree traversal

#### Cons:

- $\bullet$  recursive subdivision into 27 subcubes  $\rightarrow$  adaptive refinement less adaptive;
- partitions have larger surface-for-volume than with octree traversals (SASBURG 2011).

Faloutsos's traversal (generalized from FALOUTSOS 1986)

Octants A and B share face  $f \rightarrow$  traversal in B is reversed image of A under reflection in f



Desired: palindromic, face continuous octree traversal

Faloutsos's traversal (generalized from FALOUTSOS 1986)

Octants A and B share face  $f \rightarrow$  traversal in B is reversed image of A under reflection in f



Desired: palindromic, face-continuous octree traversal

Morton order (MORTON 1966): no rotations or reflections



#### Desired: palindromic, face-continuous octree traversal

Morton order (MORTON 1966): no rotations or reflections



#### Desired: palindromic, face-continuous octree traversal

Morton order (MORTON 1966): no rotations or reflections





*homodromic*: 2nd traversal of face = reverse of 1st *or the same* 

Desired: palindromic, face continuous octree traversal

Morton order (MORTON 1966): no rotations or reflections





homodromic: 2nd traversal of face = reverse of 1st or the same quasi-face-continuous: interior of union of consecutive set of cells Desired: palindromic, face-continuous octree traversal has O(1) connected components.
Morton order (MORTON 1966): no rotations or reflections



*homodromic*: 2nd traversal of face = reverse of 1st or the same

turned onto Lafter 4th octant

turned onto B turned onto F

face

left

right

top

front

hind

bottom

pushed onto T; pushed onto H; aft. 2nd/6th oct. aft. 1/3/5/7th

quasi-face-continuous: interior of union of consecutive set of cells has O(1) connected components. Desired: palindromic, face-continuous octree traversal

Desiderata:

- octree traversal (cubes/simplices recursively subdivided into 8 parts)
- face-continuous: consecutive cells share a face altern.: *quasi-face-cont.*: interior of union of set of consecutive cells has O(1) components
- *palindromic*: for every set of adjacent cubes/simplices sharing a common face/edge, every subseq. traversal of common face/edge is reverse of previous traversal

altern.: homodromic: subsequent traversals are reverse or same (more stack operations required)

| octree trav.       | non-face-continuous   | quasi-face-continuous | face-continuous                        |
|--------------------|-----------------------|-----------------------|----------------------------------------|
| non-<br>homodromic |                       |                       | 1000s of generalized<br>Hilbert curves |
| homodromic         |                       | Morton traversal      |                                        |
| palindromic        | Faloutsos's traversal |                       | computer says no                       |

Desiderata:

- octree traversal (cubes/simplices recursively subdivided into 8 parts)
- face-continuous: consecutive cells share a face altern.: *quasi-face-cont.*: interior of union of set of consecutive cells has O(1) components
- *palindromic*: for every set of adjacent cubes/simplices sharing a common face/edge, every subseq. traversal of common face/edge is reverse of previous traversal

altern.: homodromic: subsequent traversals are reverse or same (more stack operations required)

| octree trav.       | non-face-continuous   | quasi-face-continuous | face-continuous                        |
|--------------------|-----------------------|-----------------------|----------------------------------------|
| non-<br>homodromic |                       |                       | 1000s of generalized<br>Hilbert curves |
| homodromic         |                       | Morton traversal      | computer says no                       |
| palindromic        | Faloutsos's traversal |                       | computer says no                       |

Desiderata:

- octree traversal (cubes/simplices recursively subdivided into 8 parts)
- face-continuous: consecutive cells share a face altern.: *quasi-face-cont.*: interior of union of set of consecutive cells has O(1) components
- *palindromic*: for every set of adjacent cubes/simplices sharing a common face/edge, every subseq. traversal of common face/edge is reverse of previous traversal

altern.: homodromic: subsequent traversals are reverse or same (more stack operations required)

| octree trav.       | non-face-continuous   | quasi-face-continuous                                            | face-continuous                        |
|--------------------|-----------------------|------------------------------------------------------------------|----------------------------------------|
| non-<br>homodromic |                       |                                                                  | 1000s of generalized<br>Hilbert curves |
| homodromic         |                       | Morton traversal                                                 | computer says no                       |
| palindromic        | Faloutsos's traversal | open<br>How to recognize<br>quasi-face-continuous<br>traversals? | computer says no                       |

2D: any  $\triangle$  can be dissected into four similar (but smaller) triangles.

3D: If T is a k-reptile tetrahedron (= divisible into k congruent tetrahedra similar to T), then k is a cubic number ( $\geq 8$ ). (MATOUSEK & SAVERNOVA 2011)

Most known 8-reptile tetrahedra are *Hill tetrahedra* (after HILL 1895): convex hull of 0,  $b_1$ ,  $b_1 + b_2$ ,  $b_1 + b_2 + b_3$ , where  $b_1, b_2, b_3$  are vectors of equal length, with equal angles  $\alpha < \frac{2}{3}\pi$  between each pair

$$\alpha = \pi/2$$
:



2D: any  $\triangle$  can be dissected into four similar (but smaller) triangles.

3D: If T is a k-reptile tetrahedron (= divisible into k congruent tetrahedra similar to T), then k is a cubic number ( $\geq 8$ ). (MATOUSEK & SAVERNOVA 2011)

Most known 8-reptile tetrahedra are *Hill tetrahedra* (after HILL 1895): convex hull of 0,  $b_1$ ,  $b_1 + b_2$ ,  $b_1 + b_2 + b_3$ , where  $b_1, b_2, b_3$  are vectors of equal length, with equal angles  $\alpha < \frac{2}{3}\pi$  between each pair

$$\alpha = \pi/2$$
:



2D: any  $\triangle$  can be dissected into four similar (but smaller) triangles.

3D: If T is a k-reptile tetrahedron (= divisible into k congruent tetrahedra similar to T), then k is a cubic number ( $\geq 8$ ). (MATOUSEK & SAVERNOVA 2011)

Most known 8-reptile tetrahedra are *Hill tetrahedra* (after HILL 1895): convex hull of 0,  $b_1$ ,  $b_1 + b_2$ ,  $b_1 + b_2 + b_3$ , where  $b_1, b_2, b_3$  are vectors of equal length, with equal angles  $\alpha < \frac{2}{3}\pi$  between each pair

$$\alpha = \pi/2$$



2D: any  $\triangle$  can be dissected into four similar (but smaller) triangles.

3D: If T is a k-reptile tetrahedron (= divisible into k congruent tetrahedra similar to T), then k is a cubic number ( $\geq 8$ ). (MATOUSEK & SAVERNOVA 2011)

Most known 8-reptile tetrahedra are *Hill tetrahedra* (after HILL 1895): convex hull of 0,  $b_1$ ,  $b_1 + b_2$ ,  $b_1 + b_2 + b_3$ , where  $b_1, b_2, b_3$  are vectors of equal length, with equal angles  $\alpha < \frac{2}{3}\pi$  between each pair



2D: any  $\triangle$  can be dissected into four similar (but smaller) triangles.

3D: If T is a k-reptile tetrahedron (= divisible into k congruent tetrahedra similar to T), then k is a cubic number ( $\geq 8$ ). (MATOUSEK & SAVERNOVA 2011)

Most known 8-reptile tetrahedra are *Hill tetrahedra* (after HILL 1895): convex hull of 0,  $b_1$ ,  $b_1 + b_2$ ,  $b_1 + b_2 + b_3$ , where  $b_1, b_2, b_3$  are vectors of equal length, with equal angles  $\alpha < \frac{2}{3}\pi$  between each pair



2D: any  $\triangle$  can be dissected into four similar (but smaller) triangles.

3D: If T is a k-reptile tetrahedron (= divisible into k congruent tetrahedra similar to T), then k is a cubic number ( $\geq 8$ ). (MATOUSEK & SAVERNOVA 2011)

Most known 8-reptile tetrahedra are *Hill tetrahedra* (after HILL 1895): convex hull of 0,  $b_1$ ,  $b_1 + b_2$ ,  $b_1 + b_2 + b_3$ , where  $b_1, b_2, b_3$  are vectors of equal length, with equal angles  $\alpha < \frac{2}{3}\pi$  between each pair



2D: any  $\triangle$  can be dissected into four similar (but smaller) triangles.

3D: If T is a k-reptile tetrahedron (= divisible into k congruent tetrahedra similar to T), then k is a cubic number ( $\geq 8$ ). (MATOUSEK & SAVERNOVA 2011)

Most known 8-reptile tetrahedra are *Hill tetrahedra* (after HILL 1895): convex hull of 0,  $b_1$ ,  $b_1 + b_2$ ,  $b_1 + b_2 + b_3$ , where  $b_1, b_2, b_3$  are vectors of equal length, with equal angles  $\alpha < \frac{2}{3}\pi$  between each pair



2D: any  $\triangle$  can be dissected into four similar (but smaller) triangles.

3D: If T is a k-reptile tetrahedron (= divisible into k congruent tetrahedra similar to T), then k is a cubic number ( $\geq 8$ ). (MATOUSEK & SAVERNOVA 2011)

Most known 8-reptile tetrahedra are *Hill tetrahedra* (after HILL 1895): convex hull of 0,  $b_1$ ,  $b_1 + b_2$ ,  $b_1 + b_2 + b_3$ , where  $b_1, b_2, b_3$  are vectors of equal length, with equal angles  $\alpha < \frac{2}{3}\pi$  between each pair



2D: any  $\triangle$  can be dissected into four similar (but smaller) triangles.

3D: If T is a k-reptile tetrahedron (= divisible into k congruent tetrahedra similar to T), then k is a cubic number ( $\geq 8$ ). (MATOUSEK & SAVERNOVA 2011)

Most known 8-reptile tetrahedra are *Hill tetrahedra* (after HILL 1895): convex hull of 0,  $b_1$ ,  $b_1 + b_2$ ,  $b_1 + b_2 + b_3$ , where  $b_1, b_2, b_3$  are vectors of equal length, with equal angles  $\alpha < \frac{2}{3}\pi$  between each pair



2D: any  $\triangle$  can be dissected into four similar (but smaller) triangles.

3D: If T is a k-reptile tetrahedron (= divisible into k congruent tetrahedra similar to T), then k is a cubic number ( $\geq 8$ ). (MATOUSEK & SAVERNOVA 2011)

Most known 8-reptile tetrahedra are *Hill tetrahedra* (after HILL 1895): convex hull of 0,  $b_1$ ,  $b_1 + b_2$ ,  $b_1 + b_2 + b_3$ , where  $b_1, b_2, b_3$  are vectors of equal length, with equal angles  $\alpha < \frac{2}{3}\pi$  between each pair



2D: any  $\triangle$  can be dissected into four similar (but smaller) triangles.

3D: If T is a k-reptile tetrahedron (= divisible into k congruent tetrahedra similar to T), then k is a cubic number ( $\geq 8$ ). (MATOUSEK & SAVERNOVA 2011)

Most known 8-reptile tetrahedra are *Hill tetrahedra* (after HILL 1895): convex hull of 0,  $b_1$ ,  $b_1 + b_2$ ,  $b_1 + b_2 + b_3$ , where  $b_1, b_2, b_3$  are vectors of equal length, with equal angles  $\alpha < \frac{2}{3}\pi$  between each pair



2D: any  $\triangle$  can be dissected into four similar (but smaller) triangles.

3D: If T is a k-reptile tetrahedron (= divisible into k congruent tetrahedra similar to T), then k is a cubic number ( $\geq 8$ ). (MATOUSEK & SAVERNOVA 2011)

Most known 8-reptile tetrahedra are *Hill tetrahedra* (after HILL 1895): convex hull of 0,  $b_1$ ,  $b_1 + b_2$ ,  $b_1 + b_2 + b_3$ , where  $b_1, b_2, b_3$  are vectors of equal length, with equal angles  $\alpha < \frac{2}{3}\pi$  between each pair



2D: any  $\triangle$  can be dissected into four similar (but smaller) triangles.

3D: If T is a k-reptile tetrahedron (= divisible into k congruent tetrahedra similar to T), then k is a cubic number ( $\geq 8$ ). (MATOUSEK & SAVERNOVA 2011)

Most known 8-reptile tetrahedra are *Hill tetrahedra* (after HILL 1895): convex hull of 0,  $b_1$ ,  $b_1 + b_2$ ,  $b_1 + b_2 + b_3$ , where  $b_1, b_2, b_3$  are vectors of equal length, with equal angles  $\alpha < \frac{2}{3}\pi$  between each pair



2D: any  $\triangle$  can be dissected into four similar (but smaller) triangles.

3D: If T is a k-reptile tetrahedron (= divisible into k congruent tetrahedra similar to T), then k is a cubic number ( $\geq 8$ ). (MATOUSEK & SAVERNOVA 2011)

Most known 8-reptile tetrahedra are *Hill tetrahedra* (after HILL 1895): convex hull of 0,  $b_1$ ,  $b_1 + b_2$ ,  $b_1 + b_2 + b_3$ , where  $b_1, b_2, b_3$  are vectors of equal length, with equal angles  $\alpha < \frac{2}{3}\pi$  between each pair



2D: any  $\triangle$  can be dissected into four similar (but smaller) triangles.

3D: If T is a k-reptile tetrahedron (= divisible into k congruent tetrahedra similar to T), then k is a cubic number ( $\geq 8$ ). (MATOUSEK & SAVERNOVA 2011)

Most known 8-reptile tetrahedra are *Hill tetrahedra* (after HILL 1895): convex hull of 0,  $b_1$ ,  $b_1 + b_2$ ,  $b_1 + b_2 + b_3$ , where  $b_1, b_2, b_3$  are vectors of equal length, with equal angles  $\alpha < \frac{2}{3}\pi$  between each pair



2D: any  $\triangle$  can be dissected into four similar (but smaller) triangles.

3D: If T is a k-reptile tetrahedron (= divisible into k congruent tetrahedra similar to T), then k is a cubic number ( $\geq 8$ ). (MATOUSEK & SAVERNOVA 2011)

Most known 8-reptile tetrahedra are *Hill tetrahedra* (after HILL 1895): convex hull of 0,  $b_1$ ,  $b_1 + b_2$ ,  $b_1 + b_2 + b_3$ , where  $b_1, b_2, b_3$  are vectors of equal length, with equal angles  $\alpha < \frac{2}{3}\pi$  between each pair



2D: any  $\triangle$  can be dissected into four similar (but smaller) triangles.

3D: If T is a k-reptile tetrahedron (= divisible into k congruent tetrahedra similar to T), then k is a cubic number ( $\geq 8$ ). (MATOUSEK & SAVERNOVA 2011)

Most known 8-reptile tetrahedra are *Hill tetrahedra* (after HILL 1895): convex hull of 0,  $b_1$ ,  $b_1 + b_2$ ,  $b_1 + b_2 + b_3$ , where  $b_1, b_2, b_3$  are vectors of equal length, with equal angles  $\alpha < \frac{2}{3}\pi$  between each pair



2D: any  $\triangle$  can be dissected into four similar (but smaller) triangles.

3D: If T is a k-reptile tetrahedron (= divisible into k congruent tetrahedra similar to T), then k is a cubic number ( $\geq 8$ ). (MATOUSEK & SAVERNOVA 2011)

Most known 8-reptile tetrahedra are *Hill tetrahedra* (after HILL 1895): convex hull of 0,  $b_1$ ,  $b_1 + b_2$ ,  $b_1 + b_2 + b_3$ , where  $b_1, b_2, b_3$  are vectors of equal length, with equal angles  $\alpha < \frac{2}{3}\pi$  between each pair



2D: any  $\triangle$  can be dissected into four similar (but smaller) triangles.

3D: If T is a k-reptile tetrahedron (= divisible into k congruent tetrahedra similar to T), then k is a cubic number ( $\geq 8$ ). (MATOUSEK & SAVERNOVA 2011)

Most known 8-reptile tetrahedra are *Hill tetrahedra* (after HILL 1895): convex hull of 0,  $b_1$ ,  $b_1 + b_2$ ,  $b_1 + b_2 + b_3$ , where  $b_1, b_2, b_3$  are vectors of equal length, with equal angles  $\alpha < \frac{2}{3}\pi$  between each pair



2D: any  $\triangle$  can be dissected into four similar (but smaller) triangles.

3D: If T is a k-reptile tetrahedron (= divisible into k congruent tetrahedra similar to T), then k is a cubic number ( $\geq 8$ ). (MATOUSEK & SAVERNOVA 2011)

Most known 8-reptile tetrahedra are *Hill tetrahedra* (after HILL 1895): convex hull of 0,  $b_1$ ,  $b_1 + b_2$ ,  $b_1 + b_2 + b_3$ , where  $b_1, b_2, b_3$  are vectors of equal length, with equal angles  $\alpha < \frac{2}{3}\pi$  between each pair



2D: any riangle can be dissected into four similar (but smaller) triangles.

3D: If T is a k-reptile tetrahedron (= divisible into k congruent tetrahedra similar to T), then k is a cubic number ( $\geq 8$ ). (MATOUSEK & SAVERNOVA 2011)

Most known 8-reptile tetrahedra are *Hill tetrahedra* (after HILL 1895): convex hull of 0,  $b_1$ ,  $b_1 + b_2$ ,  $b_1 + b_2 + b_3$ , where  $b_1, b_2, b_3$  are vectors of equal length, with equal angles  $\alpha < \frac{2}{3}\pi$  between each pair



2D: any  $\triangle$  can be dissected into four similar (but smaller) triangles.

3D: If T is a k-reptile tetrahedron (= divisible into k congruent tetrahedra similar to T), then k is a cubic number ( $\geq 8$ ). (MATOUSEK & SAVERNOVA 2011)

Most known 8-reptile tetrahedra are *Hill tetrahedra* (after HILL 1895): convex hull of 0,  $b_1$ ,  $b_1 + b_2$ ,  $b_1 + b_2 + b_3$ , where  $b_1, b_2, b_3$  are vectors of equal length, with equal angles  $\alpha < \frac{2}{3}\pi$  between each pair



2D: any  $\triangle$  can be dissected into four similar (but smaller) triangles.

3D: If T is a k-reptile tetrahedron (= divisible into k congruent tetrahedra similar to T), then k is a cubic number ( $\geq 8$ ). (MATOUSEK & SAVERNOVA 2011)

Most known 8-reptile tetrahedra are *Hill tetrahedra* (after HILL 1895): convex hull of 0,  $b_1$ ,  $b_1 + b_2$ ,  $b_1 + b_2 + b_3$ , where  $b_1, b_2, b_3$  are vectors of equal length, with equal angles  $\alpha < \frac{2}{3}\pi$  between each pair



2D: any  $\triangle$  can be dissected into four similar (but smaller) triangles.

3D: If T is a k-reptile tetrahedron (= divisible into k congruent tetrahedra similar to T), then k is a cubic number ( $\geq 8$ ). (MATOUSEK & SAVERNOVA 2011)

Most known 8-reptile tetrahedra are *Hill tetrahedra* (after HILL 1895): convex hull of 0,  $b_1$ ,  $b_1 + b_2$ ,  $b_1 + b_2 + b_3$ , where  $b_1, b_2, b_3$  are vectors of equal length, with equal angles  $\alpha < \frac{2}{3}\pi$  between each pair



2D: any  $\triangle$  can be dissected into four similar (but smaller) triangles.

3D: If T is a k-reptile tetrahedron (= divisible into k congruent tetrahedra similar to T), then k is a cubic number ( $\geq 8$ ). (MATOUSEK & SAVERNOVA 2011)

Most known 8-reptile tetrahedra are *Hill tetrahedra* (after HILL 1895): convex hull of 0,  $b_1$ ,  $b_1 + b_2$ ,  $b_1 + b_2 + b_3$ , where  $b_1, b_2, b_3$  are vectors of equal length, with equal angles  $\alpha < \frac{2}{3}\pi$  between each pair



Only one way to subdivide into 8 equal, similar tetrahedra.



Only one way to subdivide into 8 equal, similar tetrahedra.

Four subtetrahedra share a face with only one other  $\rightarrow$  no face-continuous traversal



Only one way to subdivide into 8 equal, similar tetrahedra.

Four subtetrahedra share a face with only one other  $\rightarrow$  no face-continuous traversal



Only one way to subdivide into 8 equal, similar tetrahedra.

Four subtetrahedra share a face with only one other  $\rightarrow$  no face-continuous traversal



 $X_f$ ,  $X_b$ : subtetrahedron of X in the front, back Palindromic implies:  $(A_f \prec A_b) = (B_b \prec B_f) = (C_f \prec C_b)$ 

Only one way to subdivide into 8 equal, similar tetrahedra.

Four subtetrahedra share a face with only one other  $\rightarrow$  no face-continuous traversal



 $X_f$ ,  $X_b$ : subtetrahedron of X in the front, back Palindromic implies:  $(A_f \prec A_b) = (B_b \prec B_f) = (C_f \prec C_b)$ 

 $\rightarrow$  between traversals of A and C, stack with vertices of common edge must be reversed  $\rightarrow B$  must be traversed between A and C

Only one way to subdivide into 8 equal, similar tetrahedra.

Four subtetrahedra share a face with only one other  $\rightarrow$  no face-continuous traversal



 $\rightarrow$  between traversals of A and C, stack with vertices of common edge must be reversed

- $\rightarrow B$  must be traversed between A and C
- ightarrow combine conditions on all edges ightarrow no palindromic traversal possible

(still hope for: quasi-face-continuous, homodromic traversal)

# Tetrahedral meshes: liujoedron bisection scheme



quasi-face-continuous, homodromic


quasi-face-continuous, homodromic







quasi-face-continuous, homodromic





quasi-face-continuous, homodromic















# Summary: results on octree traversals



Open problems:

- insightful proof of negative results on cubes
- meaningful surface-to-volume measures—and how to compute them?
- what tetrahedra are reptiles?
- (traversals for 1/6, 1/12, 1/24 cube tetrahedra that do not follow bisection scheme?)
- hypercubes in > 3 dimensions?
- simplexes in > 3 dimensions?
- accommodating adaptive cell shapes?

# Summary: results on octree traversals



Open problems:

- insightful proof of negative results on cubes
- meaningful surface-to-volume measures—and how to compute them?
- what tetrahedra are reptiles?
- (traversals for 1/6, 1/12, 1/24 cube tetrahedra that do not follow bisection scheme?)
- hypercubes in > 3 dimensions?
- simplexes in > 3 dimensions?
- accommodating adaptive cell shapes?

## THANK YOU FOR YOUR ATTENTION



Solid object with heat sources and sinks on boundary; simulate heat distribution on vertices, flow through faces by repeatedly iterating over all cells.

Requires:

- storing vertex/edge/face values between iterations
- $\bullet$  repeated access to v/e/faces on boundaries between cells
- $\bullet$  adaptive refinement of the mesh



Solid object with heat sources and sinks on boundary; simulate heat distribution on vertices, flow through faces by repeatedly iterating over all cells.

Requires:

- storing vertex/edge/face values between iterations
- $\bullet$  repeated access to  $\nu/e/faces$  on boundaries between cells
- adaptive refinement of the mesh

### Weinzierl 2009:

current vertex/edge/face values popped from *input stack* when first visited; new vertex/edge/face values pushed on *output stack* when last visited; alternate forward and reverse iterations (stacks swap roles);

between first and last visits to a vertex/edge/face, value stored on intermediate stacks:



Solid object with heat sources and sinks on boundary; simulate heat distribution on vertices, flow through faces by repeatedly iterating over all cells.

Requires:

- storing vertex/edge/face values between iterations
- $\bullet$  repeated access to v/e/faces on boundaries between cells
- adaptive refinement of the mesh

### Weinzierl 2009:

current vertex/edge/face values popped from *input stack* when first visited; new vertex/edge/face values pushed on *output stack* when last visited; alternate forward and reverse iterations (stacks swap roles);

between first and last visits to a vertex/edge/face, value stored on intermediate stacks:
two stacks for horizontal faces (one for odd heights, one for even heights)



Solid object with heat sources and sinks on boundary; simulate heat distribution on vertices, flow through faces by repeatedly iterating over all cells.

Requires:

- storing vertex/edge/face values between iterations
- $\bullet$  repeated access to v/e/faces on boundaries between cells
- adaptive refinement of the mesh

### Weinzierl 2009:

current vertex/edge/face values popped from *input stack* when first visited; new vertex/edge/face values pushed on *output stack* when last visited; alternate forward and reverse iterations (stacks swap roles);

between first and last visits to a vertex/edge/face, value stored on intermediate stacks:

- two stacks for horizontal faces (one for odd heights, one for even heights)
- two stacks for left/right faces (one for odd coordinates, one for even coordinates)



Solid object with heat sources and sinks on boundary; simulate heat distribution on vertices, flow through faces by repeatedly iterating over all cells.

Requires:

- storing vertex/edge/face values between iterations
- $\bullet$  repeated access to v/e/faces on boundaries between cells
- adaptive refinement of the mesh

### Weinzierl 2009:

current vertex/edge/face values popped from *input stack* when first visited; new vertex/edge/face values pushed on *output stack* when last visited; alternate forward and reverse iterations (stacks swap roles);

between first and last visits to a vertex/edge/face, value stored on intermediate stacks:

- two stacks for horizontal faces (one for odd heights, one for even heights)
- two stacks for left/right faces (one for odd coordinates, one for even coordinates)
- two stacks for front/back faces (one for odd coordinates, one for even coordinates)



Solid object with heat sources and sinks on boundary; simulate heat distribution on vertices, flow through faces by repeatedly iterating over all cells.

Requires:

- storing vertex/edge/face values between iterations
- $\bullet$  repeated access to v/e/faces on boundaries between cells
- adaptive refinement of the mesh

### Weinzierl 2009:

current vertex/edge/face values popped from *input stack* when first visited; new vertex/edge/face values pushed on *output stack* when last visited; alternate forward and reverse iterations (stacks swap roles);

between first and last visits to a vertex/edge/face, value stored on intermediate stacks:

- two stacks for horizontal faces (one for odd heights, one for even heights)
- two stacks for left/right faces (one for odd coordinates, one for even coordinates)
- two stacks for front/back faces (one for odd coordinates, one for even coordinates)



Solid object with heat sources and sinks on boundary; simulate heat distribution on vertices, flow through faces by repeatedly iterating over all cells.

Requires:

- storing vertex/edge/face values between iterations
- $\bullet$  repeated access to v/e/faces on boundaries between cells
- adaptive refinement of the mesh

### Weinzierl 2009:

current vertex/edge/face values popped from *input stack* when first visited; new vertex/edge/face values pushed on *output stack* when last visited; alternate forward and reverse iterations (stacks swap roles);

between first and last visits to a vertex/edge/face, value stored on intermediate stacks:

- two stacks for horizontal faces (one for odd heights, one for even heights)
- two stacks for left/right faces (one for odd coordinates, one for even coordinates)
- two stacks for front/back faces (one for odd coordinates, one for even coordinates)



Solid object with heat sources and sinks on boundary; simulate heat distribution on vertices, flow through faces by repeatedly iterating over all cells.

Requires:

- storing vertex/edge/face values between iterations
- $\bullet$  repeated access to v/e/faces on boundaries between cells
- adaptive refinement of the mesh

### Weinzierl 2009:

current vertex/edge/face values popped from *input stack* when first visited; new vertex/edge/face values pushed on *output stack* when last visited; alternate forward and reverse iterations (stacks swap roles);

between first and last visits to a vertex/edge/face, value stored on intermediate stacks:

- two stacks for horizontal faces (one for odd heights, one for even heights)
- two stacks for left/right faces (one for odd coordinates, one for even coordinates)
- two stacks for front/back faces (one for odd coordinates, one for even coordinates)



Solid object with heat sources and sinks on boundary; simulate heat distribution on vertices, flow through faces by repeatedly iterating over all cells.

Requires:

- storing vertex/edge/face values between iterations
- $\bullet$  repeated access to v/e/faces on boundaries between cells
- adaptive refinement of the mesh

### Weinzierl 2009:

current vertex/edge/face values popped from *input stack* when first visited; new vertex/edge/face values pushed on *output stack* when last visited; alternate forward and reverse iterations (stacks swap roles);

between first and last visits to a vertex/edge/face, value stored on intermediate stacks:

- two stacks for horizontal faces (one for odd heights, one for even heights)
- two stacks for left/right faces (one for odd coordinates, one for even coordinates)
- two stacks for front/back faces (one for odd coordinates, one for even coordinates)



Solid object with heat sources and sinks on boundary; simulate heat distribution on vertices, flow through faces by repeatedly iterating over all cells.

Requires:

- storing vertex/edge/face values between iterations
- $\bullet$  repeated access to v/e/faces on boundaries between cells
- adaptive refinement of the mesh

### Weinzierl 2009:

current vertex/edge/face values popped from *input stack* when first visited; new vertex/edge/face values pushed on *output stack* when last visited; alternate forward and reverse iterations (stacks swap roles);

between first and last visits to a vertex/edge/face, value stored on intermediate stacks:

- two stacks for horizontal faces (one for odd heights, one for even heights)
- two stacks for left/right faces (one for odd coordinates, one for even coordinates)
- two stacks for front/back faces (one for odd coordinates, one for even coordinates)



Solid object with heat sources and sinks on boundary; simulate heat distribution on vertices, flow through faces by repeatedly iterating over all cells.

Requires:

- storing vertex/edge/face values between iterations
- $\bullet$  repeated access to v/e/faces on boundaries between cells
- adaptive refinement of the mesh

### Weinzierl 2009:

current vertex/edge/face values popped from *input stack* when first visited; new vertex/edge/face values pushed on *output stack* when last visited; alternate forward and reverse iterations (stacks swap roles);

between first and last visits to a vertex/edge/face, value stored on intermediate stacks:

- two stacks for horizontal faces (one for odd heights, one for even heights)
- two stacks for left/right faces (one for odd coordinates, one for even coordinates)
- two stacks for front/back faces (one for odd coordinates, one for even coordinates)



Solid object with heat sources and sinks on boundary; simulate heat distribution on vertices, flow through faces by repeatedly iterating over all cells.

Requires:

- storing vertex/edge/face values between iterations
- $\bullet$  repeated access to v/e/faces on boundaries between cells
- adaptive refinement of the mesh

### Weinzierl 2009:

current vertex/edge/face values popped from *input stack* when first visited; new vertex/edge/face values pushed on *output stack* when last visited; alternate forward and reverse iterations (stacks swap roles);

between first and last visits to a vertex/edge/face, value stored on intermediate stacks:

- two stacks for horizontal faces (one for odd heights, one for even heights)
- two stacks for left/right faces (one for odd coordinates, one for even coordinates)
- two stacks for front/back faces (one for odd coordinates, one for even coordinates)



Solid object with heat sources and sinks on boundary; simulate heat distribution on vertices, flow through faces by repeatedly iterating over all cells.

Requires:

- storing vertex/edge/face values between iterations
- $\bullet$  repeated access to v/e/faces on boundaries between cells
- adaptive refinement of the mesh

### Weinzierl 2009:

current vertex/edge/face values popped from *input stack* when first visited; new vertex/edge/face values pushed on *output stack* when last visited; alternate forward and reverse iterations (stacks swap roles);

between first and last visits to a vertex/edge/face, value stored on intermediate stacks:

- two stacks for horizontal faces (one for odd heights, one for even heights)
- two stacks for left/right faces (one for odd coordinates, one for even coordinates)
- two stacks for front/back faces (one for odd coordinates, one for even coordinates)



Solid object with heat sources and sinks on boundary; simulate heat distribution on vertices, flow through faces by repeatedly iterating over all cells.

Requires:

- storing vertex/edge/face values between iterations
- $\bullet$  repeated access to v/e/faces on boundaries between cells
- adaptive refinement of the mesh

### Weinzierl 2009:

current vertex/edge/face values popped from *input stack* when first visited; new vertex/edge/face values pushed on *output stack* when last visited; alternate forward and reverse iterations (stacks swap roles);

between first and last visits to a vertex/edge/face, value stored on intermediate stacks:

- two stacks for horizontal faces (one for odd heights, one for even heights)
- two stacks for left/right faces (one for odd coordinates, one for even coordinates)
- two stacks for front/back faces (one for odd coordinates, one for even coordinates)



Solid object with heat sources and sinks on boundary; simulate heat distribution on vertices, flow through faces by repeatedly iterating over all cells.

Requires:

- storing vertex/edge/face values between iterations
- $\bullet$  repeated access to v/e/faces on boundaries between cells
- adaptive refinement of the mesh

### Weinzierl 2009:

current vertex/edge/face values popped from *input stack* when first visited; new vertex/edge/face values pushed on *output stack* when last visited; alternate forward and reverse iterations (stacks swap roles);

between first and last visits to a vertex/edge/face, value stored on intermediate stacks:

- two stacks for horizontal faces (one for odd heights, one for even heights)
- two stacks for left/right faces (one for odd coordinates, one for even coordinates)
- two stacks for front/back faces (one for odd coordinates, one for even coordinates)



Solid object with heat sources and sinks on boundary; simulate heat distribution on vertices, flow through faces by repeatedly iterating over all cells.

Requires:

- storing vertex/edge/face values between iterations
- $\bullet$  repeated access to v/e/faces on boundaries between cells
- adaptive refinement of the mesh

### Weinzierl 2009:

current vertex/edge/face values popped from *input stack* when first visited; new vertex/edge/face values pushed on *output stack* when last visited; alternate forward and reverse iterations (stacks swap roles);

between first and last visits to a vertex/edge/face, value stored on intermediate stacks:

- two stacks for horizontal faces (one for odd heights, one for even heights)
- two stacks for left/right faces (one for odd coordinates, one for even coordinates)
- two stacks for front/back faces (one for odd coordinates, one for even coordinates)



Solid object with heat sources and sinks on boundary; simulate heat distribution on vertices, flow through faces by repeatedly iterating over all cells.

Requires:

- storing vertex/edge/face values between iterations
- $\bullet$  repeated access to v/e/faces on boundaries between cells
- adaptive refinement of the mesh

### Weinzierl 2009:

current vertex/edge/face values popped from *input stack* when first visited; new vertex/edge/face values pushed on *output stack* when last visited; alternate forward and reverse iterations (stacks swap roles);

between first and last visits to a vertex/edge/face, value stored on intermediate stacks:

- two stacks for horizontal faces (one for odd heights, one for even heights)
- two stacks for left/right faces (one for odd coordinates, one for even coordinates)
- two stacks for front/back faces (one for odd coordinates, one for even coordinates)



Solid object with heat sources and sinks on boundary; simulate heat distribution on vertices, flow through faces by repeatedly iterating over all cells.

Requires:

- storing vertex/edge/face values between iterations
- $\bullet$  repeated access to v/e/faces on boundaries between cells
- adaptive refinement of the mesh

### Weinzierl 2009:

current vertex/edge/face values popped from *input stack* when first visited; new vertex/edge/face values pushed on *output stack* when last visited; alternate forward and reverse iterations (stacks swap roles);

between first and last visits to a vertex/edge/face, value stored on intermediate stacks:

- two stacks for horizontal faces (one for odd heights, one for even heights)
- two stacks for left/right faces (one for odd coordinates, one for even coordinates)
- two stacks for front/back faces (one for odd coordinates, one for even coordinates)



Solid object with heat sources and sinks on boundary; simulate heat distribution on vertices, flow through faces by repeatedly iterating over all cells.

Requires:

- storing vertex/edge/face values between iterations
- $\bullet$  repeated access to v/e/faces on boundaries between cells
- adaptive refinement of the mesh

### Weinzierl 2009:

current vertex/edge/face values popped from *input stack* when first visited; new vertex/edge/face values pushed on *output stack* when last visited; alternate forward and reverse iterations (stacks swap roles);

between first and last visits to a vertex/edge/face, value stored on intermediate stacks:

- two stacks for horizontal faces (one for odd heights, one for even heights)
- two stacks for left/right faces (one for odd coordinates, one for even coordinates)
- two stacks for front/back faces (one for odd coordinates, one for even coordinates)



Solid object with heat sources and sinks on boundary; simulate heat distribution on vertices, flow through faces by repeatedly iterating over all cells.

Requires:

- storing vertex/edge/face values between iterations
- $\bullet$  repeated access to v/e/faces on boundaries between cells
- adaptive refinement of the mesh

### Weinzierl 2009:

current vertex/edge/face values popped from *input stack* when first visited; new vertex/edge/face values pushed on *output stack* when last visited; alternate forward and reverse iterations (stacks swap roles);

between first and last visits to a vertex/edge/face, value stored on intermediate stacks:

- two stacks for horizontal faces (one for odd heights, one for even heights)
- two stacks for left/right faces (one for odd coordinates, one for even coordinates)
- two stacks for front/back faces (one for odd coordinates, one for even coordinates)



Solid object with heat sources and sinks on boundary; simulate heat distribution on vertices, flow through faces by repeatedly iterating over all cells.

Requires:

- storing vertex/edge/face values between iterations
- $\bullet$  repeated access to v/e/faces on boundaries between cells
- adaptive refinement of the mesh

### Weinzierl 2009:

current vertex/edge/face values popped from *input stack* when first visited; new vertex/edge/face values pushed on *output stack* when last visited; alternate forward and reverse iterations (stacks swap roles);

between first and last visits to a vertex/edge/face, value stored on intermediate stacks:

- two stacks for horizontal faces (one for odd heights, one for even heights)
- two stacks for left/right faces (one for odd coordinates, one for even coordinates)
- two stacks for front/back faces (one for odd coordinates, one for even coordinates)



Solid object with heat sources and sinks on boundary; simulate heat distribution on vertices, flow through faces by repeatedly iterating over all cells.

Requires:

- storing vertex/edge/face values between iterations
- $\bullet$  repeated access to v/e/faces on boundaries between cells
- adaptive refinement of the mesh

### Weinzierl 2009:

current vertex/edge/face values popped from *input stack* when first visited; new vertex/edge/face values pushed on *output stack* when last visited; alternate forward and reverse iterations (stacks swap roles);

between first and last visits to a vertex/edge/face, value stored on intermediate stacks:

- two stacks for horizontal faces (one for odd heights, one for even heights)
- two stacks for left/right faces (one for odd coordinates, one for even coordinates)
- two stacks for front/back faces (one for odd coordinates, one for even coordinates)



### • cache-efficient!

• adaptive refinement = some pushes on stacks: no complicated vertex/edge/face index!

• easy to parallelize! each processor gets part of traversal (only diff: values for variables on boundary with other processor are read/written to different stacks)

### Weinzierl 2009:

current vertex/edge/face values popped from *input stack* when first visited; new vertex/edge/face values pushed on *output stack* when last visited; alternate forward and reverse iterations (stacks swap roles);

between first and last visits to a vertex/edge/face, value stored on intermediate stacks:

- two stacks for horizontal faces (one for odd heights, one for even heights)
- two stacks for left/right faces (one for odd coordinates, one for even coordinates)
- two stacks for front/back faces (one for odd coordinates, one for even coordinates)