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Circular range query: report all points inside query circle Q

Data structure: store points tile by tile; each tile = contiguous block on disk

Query algorithm: retrieve every tile intersecting Q (one disk seek per tile)

Small query in
crowded tile
→
retrieves many
points outside Q
from disk

Large query in
sparsely
populated region
→
many disk seeks
for small result

non-recursive tiling
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Recursive tilings

recursive tiling

Data structure: store points tile by tile; each tile = contiguous block on disk

(similar to linear quadtree)

Herman Haverkort, TU Eindhoven



Recursive tilings

Goal 1: a tiles suffice to cover any disk-shaped query range Q (seek time)

Goal 2: the tiles that cover Q have total area at most c · area(Q) (read time)

Arrwwid number =
smallest a such that there is a constant c such that ∀Q both goals achieved

recursive tiling

Data structure: store points tile by tile; each tile = contiguous block on disk
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The Arrwwid number of a tiling with squares

Arrwwid number = smallest a such that ∃ constant c such that
any disk Q is covered by ≤ a tiles of total area ≤ c · area(Q)

Arrwwid nr. of square tiling ≤ 4:

Arrwwid nr. of square tiling > 3 :

For disk with radius r, consider
grid with tile width ≥ 2r, < 4r:

disk intersected by ≤ 2 grid lines;
cover by ≤ 4 tiles meeting there.

To cover with ≤ 3 tiles,
need common ancestor of red tiles,
can be much bigger than Q
→ no constant c.

Q

Arrwwid nr. ≈ degree of vertices

Are there recursive tilings with
vertex degree 3?
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From non-recursive tilings to recursive tilings

Arrwwid number: 3

Arrwwid number = smallest a such that ∃ constant c such that
any disk Q is covered by ≤ a tiles of total area ≤ c · area(Q)
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The Arrwwid number of a space-filling curve

Arrwwid number = smallest a such that ∃ constant c such that
any disk Q is covered by≤ a sets of consecutive tiles of total area≤ c·area(Q)

Arrwwid number = smallest a such that ∃ constant c such that
any disk Q is covered by ≤ a tiles of total area ≤ c · area(Q)

Definition for recursive tilings:

Definition for space-filling curves (scanning orders of recursive tilings):

Some curves have smaller Arrwwid nr. than the underlying tiling:

Some tilings have Arrwwid nr. 3. Some curves have Arrwwid nr. <3?

Asano et al.: Not if tiling divides squares into four squares
Yours truly: Not ever (assuming tiles are simply connected)

AR2W 2: 3/4 Dekking: 3/4 Kochel: 3/4 Sierpiński: 4/8
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THAT’S ALL FOLKS


