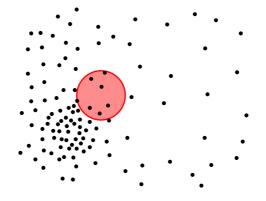
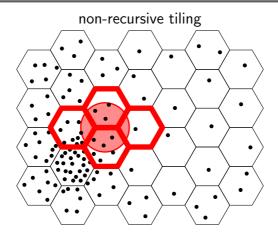
Recursive tilings and space-filling curves with little fragmentation



Circular range query: report all points inside query circle Q

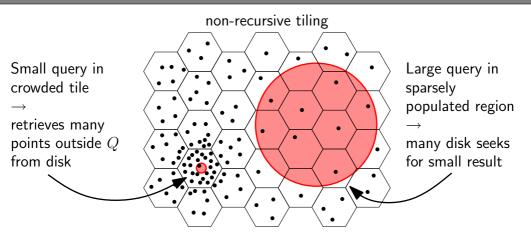
Recursive tilings and space-filling curves with little fragmentation



Data structure: store points tile by tile; each tile = contiguous block on disk

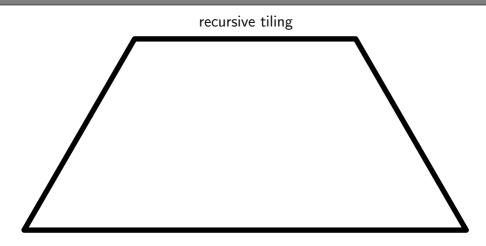
Circular range query: report all points inside query circle QQuery algorithm: retrieve every tile intersecting Q (one disk seek per tile)

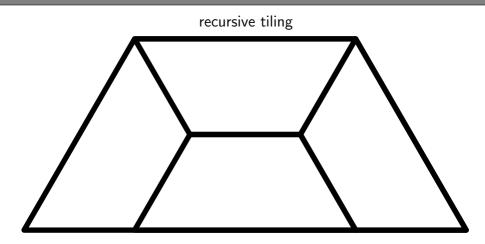
Recursive tilings and space-filling curves with little fragmentation

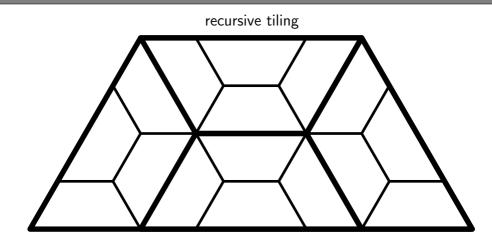


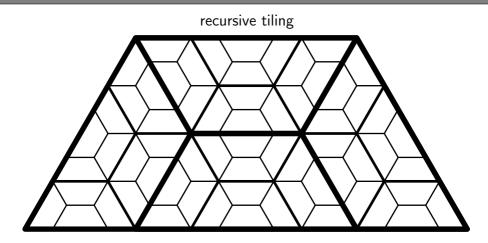
Data structure: store points tile by tile; each tile = contiguous block on disk

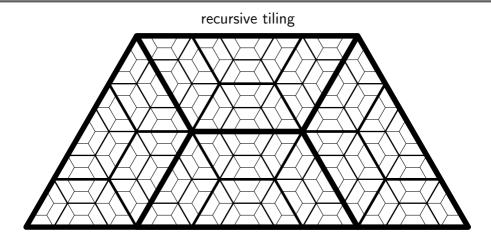
Circular range query: report all points inside query circle QQuery algorithm: retrieve every tile intersecting Q (one disk seek per tile)

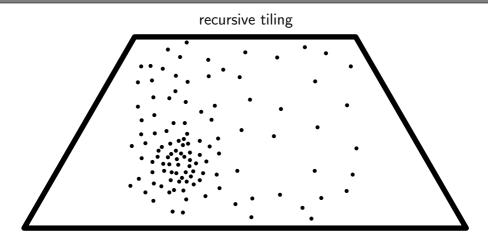


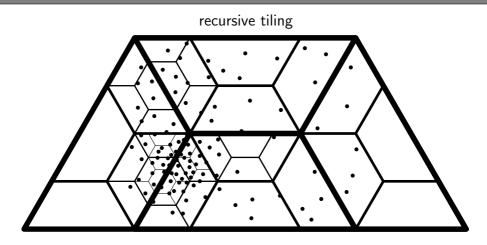




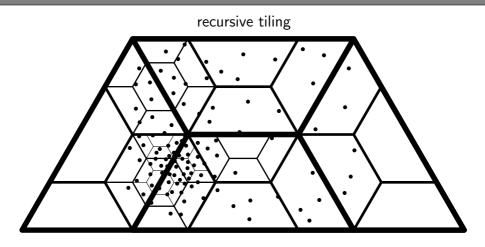






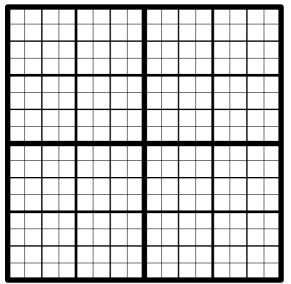


Data structure: store points tile by tile; each tile = contiguous block on disk (similar to linear quadtree)

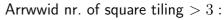


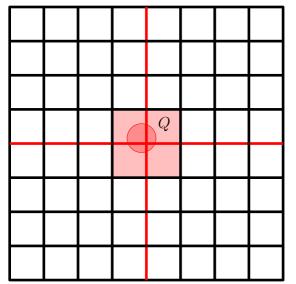
Data structure: store points tile by tile; each tile = contiguous block on disk

Goal 1: *a* tiles suffice to cover any disk-shaped query range Q (seek time) Goal 2: the tiles that cover Q have total area at most $c \cdot \operatorname{area}(Q)$ (read time) **Arrwwid number** = smallest *a* such that there is a constant *c* such that $\forall Q$ both goals achieved



Arrwwid nr. of square tiling ≤ 4 :



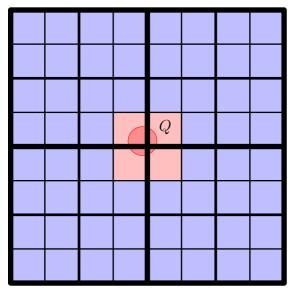


Arrwwid nr. of square tiling ≤ 4 :

For disk with radius r, consider grid with tile width $\geq 2r$, < 4r:

disk intersected by ≤ 2 grid lines; cover by ≤ 4 tiles meeting there.

Arrwwid nr. of square tiling > 3:



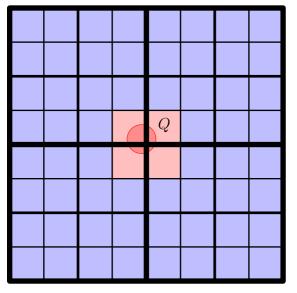
Arrwwid nr. of square tiling ≤ 4 :

For disk with radius r, consider grid with tile width $\geq 2r$, < 4r:

disk intersected by $\leq 2~{\rm grid}$ lines; cover by ≤ 4 tiles meeting there.

Arrwwid nr. of square tiling > 3:

To cover with ≤ 3 tiles, need common ancestor of red tiles, can be much bigger than Q \rightarrow no constant c.



Arrwwid nr. of square tiling ≤ 4 :

For disk with radius r, consider grid with tile width $\geq 2r$, < 4r:

disk intersected by ≤ 2 grid lines; cover by ≤ 4 tiles meeting there.

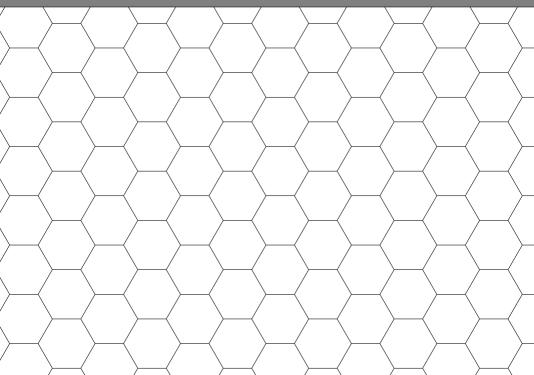
Arrwwid nr. of square tiling > 3:

To cover with ≤ 3 tiles, need common ancestor of red tiles, can be much bigger than Q \rightarrow no constant c.

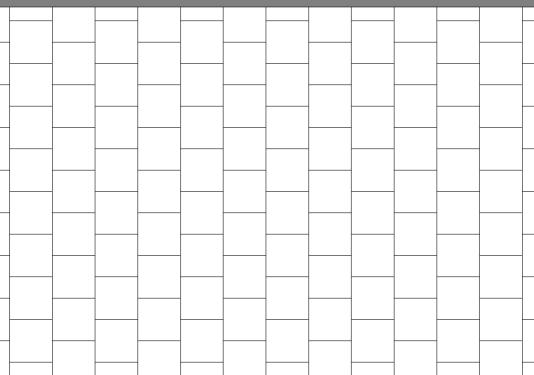
Arrwwid nr. \approx degree of vertices

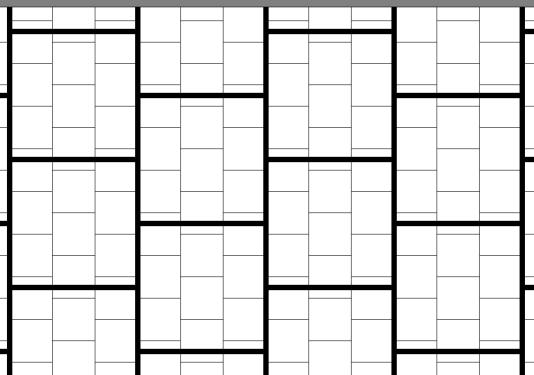
Are there recursive tilings with vertex degree 3?

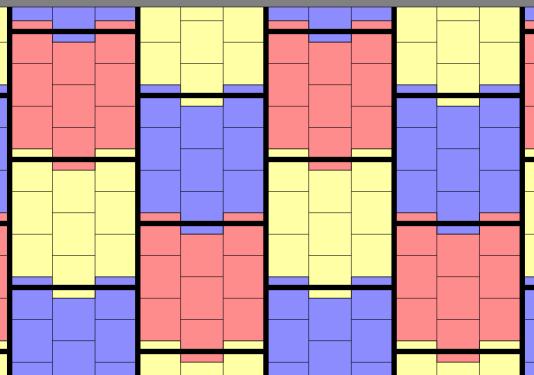
From non-recursive tilings...

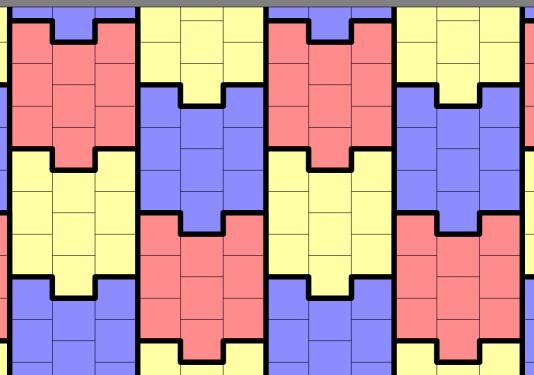


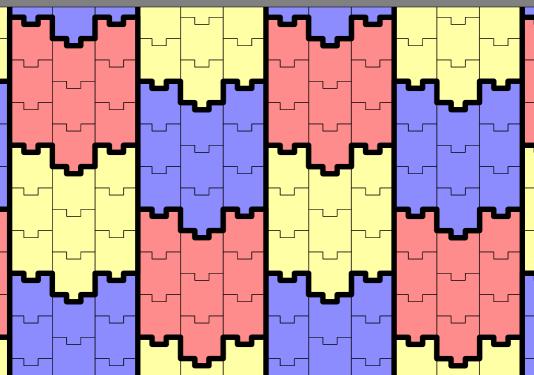
From non-recursive tilings...

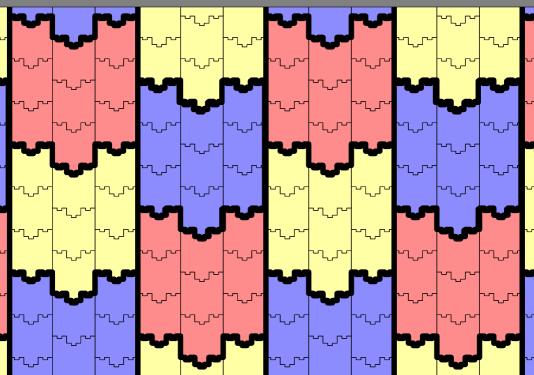


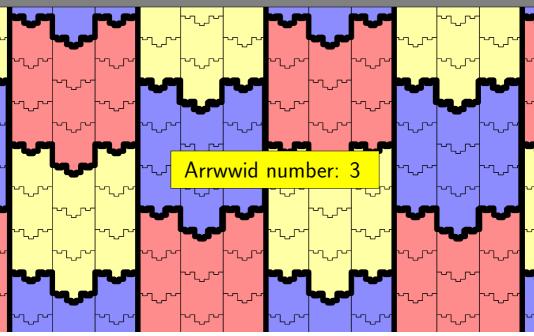


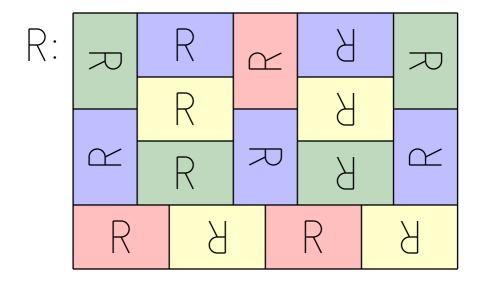


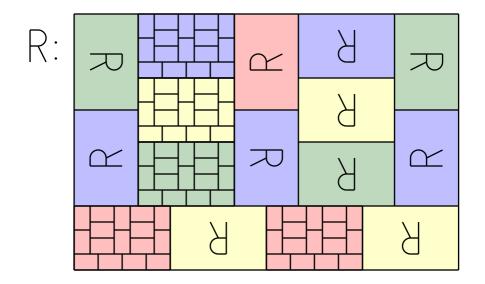


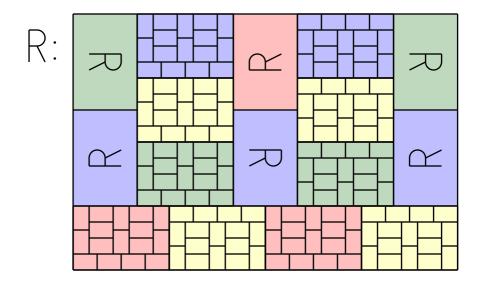


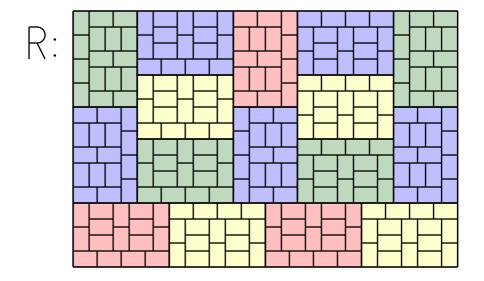


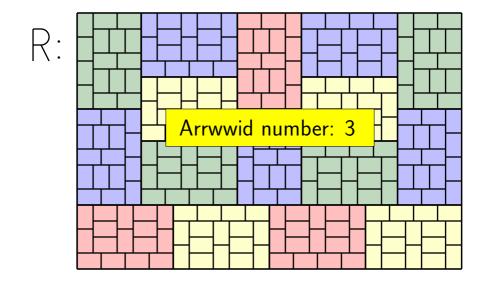


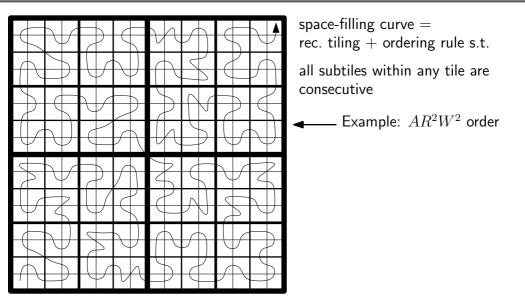


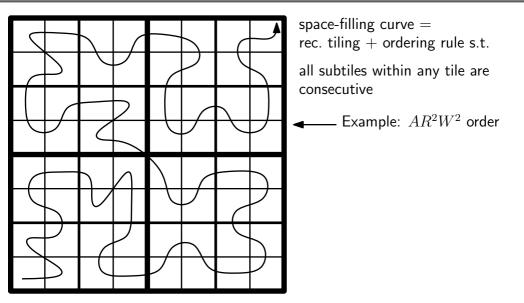


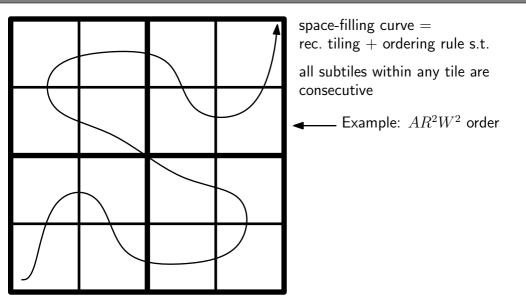


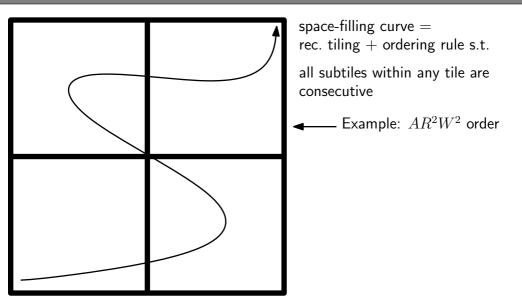


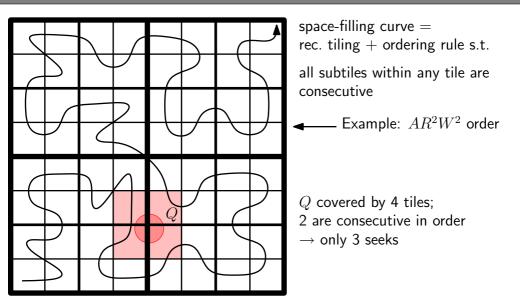


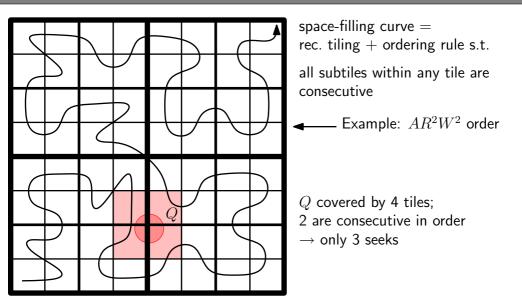












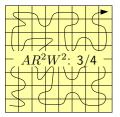
Definition for recursive tilings:

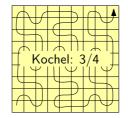
Arrwwid number = smallest a such that \exists constant c such that any disk Q is covered by $\leq a$ tiles of total area $\leq c \cdot \operatorname{area}(Q)$

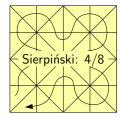
Definition for space-filling curves (scanning orders of recursive tilings):

Arrwwid number = smallest a such that \exists constant c such that any disk Q is covered by $\leq a$ sets of consecutive tiles of total area $\leq c \cdot \operatorname{area}(Q)$

Some curves have smaller Arrwwid nr. than the underlying tiling:







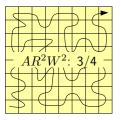
Definition for recursive tilings:

Arrwwid number = smallest a such that \exists constant c such that any disk Q is covered by $\leq a$ tiles of total area $\leq c \cdot \operatorname{area}(Q)$

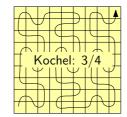
Definition for space-filling curves (scanning orders of recursive tilings):

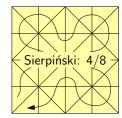
Arrwwid number = smallest a such that \exists constant c such that any disk Q is covered by $\leq a$ sets of consecutive tiles of total area $\leq c \cdot \operatorname{area}(Q)$

Some curves have smaller Arrwwid nr. than the underlying tiling:



Some tilings have Arrwwid nr. 3.





Some curves have Arrwwid nr. <3?

Asano et al.: Not if tiling divides squares into four squares Yours truly: **Not ever** (assuming tiles are simply connected)

Herman Haverkort: *Recursive tilings and space-filling curves with little fragmentation.* arXiv:1002.1843 [cs.CG], 2010

best Arrwwid nrs. for tilings 2D

uniform squares 4 [ARRWW]

best nrs. for space-filling curves	2D
uniform squares	3 [ARRWW]

Herman Haverkort: *Recursive tilings and space-filling curves with little fragmentation.* arXiv:1002.1843 [cs.CG], 2010

best Arrwwid nrs. for tilings	2D
uniform squares	4 [ARRWW]
uniform rectangles	3
uniform tiles of any shape	3
best nrs. for space-filling curves	2D
uniform squares	3 [ARRWW] - most known curves have 4
uniform rectangles	3
uniform tiles of any shape	<► 3
lower bound holds fo	or simple tiles

Herman Haverkort: *Recursive tilings and space-filling curves with little fragmentation*. arXiv:1002.1843 [cs.CG], 2010

best Arrwwid nrs. for tilings	2D	3D	<i>d</i> -D
uniform hypercubes	4 [ARRWW]	8	2^d
uniform hyperboxes	3	6 (lwbd 4)	$rac{3}{4}\cdot 2^d$ (lwbd:?
uniform tiles of any shape	3		
best nrs. for space-filling curve	s 2D		
uniform hypercubes	3 [ARRWW]		
uniform hyperboxes	3		
uniform tiles of any shape	(► 3		
lower bound holds	for simple tiles		

Herman Haverkort: *Recursive tilings and space-filling curves with little fragmentation.* arXiv:1002.1843 [cs.CG], 2010

best Arrwwid nrs. for tilings	2D	3D	d-D
uniform hypercubes	4 [ARRWW]	8	2^d
uniform hyperboxes	3	6 (lwbd 4)	$rac{3}{4} \cdot 2^d$ (lwbd:?)
uniform tiles of any shape	3	4	d+1
best nrs. for space-filling curves	2D	Æ	
uniform hypercubes	3 [ARRWW]		
uniform hyperboxes	3		
uniform tiles of any shape	<► 3	┍┸┨╾┙╼╴	
lower bound holds for	or simple tiles		

Herman Haverkort: *Recursive tilings and space-filling curves with little fragmentation*. arXiv:1002.1843 [cs.CG], 2010

best Arrwwid nrs. for tilings	2D	3D	<i>d</i> -D
uniform hypercubes	4 [ARRWW]	8	2^d
uniform hyperboxes	3	6 (lwbd 4)	$\frac{3}{4} \cdot 2^d$ (lwbd:?)
uniform tiles of any shape	3	4	d+1
best nrs. for space-filling curves	2D	3D	d-D
uniform hypercubes	3 [ARRWW]	8 (lwbd 7)	2^d (lwbd 2^d –1)
uniform hyperboxes	3	6 (lwbd 4)	$rac{3}{4} \cdot 2^d$ (lwbd:?)
uniform tiles of any shape	(► 3	4 🖜	d+1
lower bound holds for simple tiles		for convex tiles (lwbd:?)	

Herman Haverkort: *Recursive tilings and space-filling curves with little fragmentation.* arXiv:1002.1843 [cs.CG], 2010

· · · · · · · · · · · · · · · · · · ·				
best Arrwwid nrs. for tilings	2D	3D	d-D	
uniform hypercubes	4 [ARRWW]	8	2^d	
uniform hyperboxes	3	6 (lwbd 4)	$rac{3}{4}\cdot 2^d$ (lwbd:?)	
uniform tiles of any shape	3	4	d+1	
best nrs. for space-filling curves	2D	3D	d-D	
uniform hypercubes	3 [ARRWW]	8 (lwbd 7)	2^d (lwbd 2^d –1)	
uniform hyperboxes	3	6 (lwbd 4)	$rac{3}{4}\cdot 2^d$ (lwbd:?)	
uniform tiles of any shape	<► 3	4 👈	d+1 (lwbd:?)	
lower bound holds for simple tilesfor convex tiles (lwbd:?)				
exponential gap between cubes / general shapes (but maybe also in c)				
Arrwwid number = smallest a such that \exists constant c such that				
any disk Q is covered by $\leq a$ (set	any disk Q is covered by $\leq a$ (sets of consecutive) tiles of total area $\leq c \cdot \operatorname{area}(Q)$			

Herman Haverkort: *Recursive tilings and space-filling curves with little fragmentation.* arXiv:1002.1843 [cs.CG], 2010

· · · · · · · · · · · · · · · · · · ·			
best Arrwwid nrs. for tilings	2D	3D	<i>d</i> -D
uniform hypercubes	4 [ARRWW]	8	2^d
uniform hyperboxes	3	6 (lwbd 4)	$rac{3}{4}\cdot 2^d$ (lwbd:?)
uniform tiles of any shape	3	4	d+1
THAT'S ALL FOLKS			
best nrs. for space-filling curves	2D	3D	d-D
uniform hypercubes	3 [ARRWW]	8 (lwbd 7)	2^d (lwbd 2^d –1)
uniform hyperboxes	3	6 (lwbd 4)	$rac{3}{4} \cdot 2^d$ (lwbd:?) d+1
uniform tiles of any shape	→ 3	4 🔦	d+1
lower bound holds for simple tiles for convex tiles (lwbd:?)			
exponential gap between cubes / general shapes (but maybe also in c)			
Arrwwid number = smallest a such that \exists constant c such that any disk Q is covered by $\leq a$ (sets of consecutive) tiles of total area $\leq c \cdot \operatorname{area}(Q)$			