Recursive tilings and space-filling curves with little fragmentation

Circular range query: report all points inside query circle Q

Data structure: store points tile by tile; each tile $=$ contiguous block on disk
Circular range query: report all points inside query circle Q Query algorithm: retrieve every tile intersecting Q (one disk seek per tile)

Recursive tilings and space-filling curves with little fragmentation

Small query in crowded tile -
retrieves many points outside Q from disk

Data structure: store points tile by tile; each tile $=$ contiguous block on disk
Circular range query: report all points inside query circle Q Query algorithm: retrieve every tile intersecting Q (one disk seek per tile)

Recursive tilings

Herman Haverkort, TU Eindhoven

Recursive tilings

Herman Haverkort, TU Eindhoven

Recursive tilings

Herman Haverkort, TU Eindhoven

Recursive tilings

recursive tiling

Herman Haverkort, TU Eindhoven

Recursive tilings

Herman Haverkort, TU Eindhoven

Recursive tilings

Herman Haverkort, TU Eindhoven

Recursive tilings

Data structure: store points tile by tile; each tile $=$ contiguous block on disk (similar to linear quadtree)

Recursive tilings

Data structure: store points tile by tile; each tile $=$ contiguous block on disk
Goal 1: a tiles suffice to cover any disk-shaped query range Q (seek time) Goal 2: the tiles that cover Q have total area at most $c \cdot \operatorname{area}(Q)$ (read time) Arrwwid number = smallest a such that there is a constant c such that $\forall Q$ both goals achieved

Arrwwid nr. of square tiling ≤ 4 :

Arrwwid nr. of square tiling >3 :

Arrwwid number $=$ smallest a such that \exists constant c such that any disk Q is covered by $\leq a$ tiles of total area $\leq c \cdot \operatorname{area}(Q)$

Arrwwid nr. of square tiling ≤ 4 :
For disk with radius r, consider grid with tile width $\geq 2 r,<4 r$: disk intersected by ≤ 2 grid lines; cover by ≤ 4 tiles meeting there.

Arrwwid nr. of square tiling >3 :

Arrwwid number $=$ smallest a such that \exists constant c such that any disk Q is covered by $\leq a$ tiles of total area $\leq c \cdot \operatorname{area}(Q)$

Arrwwid nr . of square tiling ≤ 4 :
For disk with radius r, consider grid with tile width $\geq 2 r,<4 r$: disk intersected by ≤ 2 grid lines; cover by ≤ 4 tiles meeting there.

Arrwwid nr. of square tiling >3 :
To cover with ≤ 3 tiles, need common ancestor of red tiles, can be much bigger than Q \rightarrow no constant c.

Arrwwid number $=$ smallest a such that \exists constant c such that any disk Q is covered by $\leq a$ tiles of total area $\leq c \cdot \operatorname{area}(Q)$

Arrwwid nr. of square tiling ≤ 4 :
For disk with radius r, consider grid with tile width $\geq 2 r,<4 r$:
disk intersected by ≤ 2 grid lines; cover by ≤ 4 tiles meeting there.

Arrwwid nr. of square tiling >3 :
To cover with ≤ 3 tiles, need common ancestor of red tiles, can be much bigger than Q \rightarrow no constant c.

Arrwwid nr. \approx degree of vertices
Are there recursive tilings with vertex degree 3?

Arrwwid number $=$ smallest a such that \exists constant c such that any disk Q is covered by $\leq a$ tiles of total area $\leq c \cdot$ area (Q)

From non-recursive tilings...

From non-recursive tilings...

From non-recursive tilings to recursive tilings

F

From non-recursive tilings to recursive tilings

Arrwwid number $=$ smallest a such that \exists constant c such that any disk Q is covered by $\leq a$ tiles of total area $\leq c \cdot \operatorname{area}(Q)$

Daun tiling: Arrwwid nr. 3 and "easy" tiles

Daun tiling: Arrwwid nr. 3 and "easy" tiles

Daun tiling: Arrwwid nr. 3 and "easy" tiles

Daun tiling: Arrwwid nr. 3 and "easy" tiles

Daun tiling: Arrwwid nr. 3 and "easy" tiles

Arrwwid number $=$ smallest a such that \exists constant c such that any disk Q is covered by $\leq a$ tiles of total area $\leq c \cdot \operatorname{area}(Q)$

space-filling curve $=$ rec. tiling + ordering rule s.t.
all subtiles within any tile are consecutive
\longleftarrow Example: $A R^{2} W^{2}$ order

Arrwwid number $=$ smallest a such that \exists constant c such that any disk Q is covered by $\leq a$ tiles of total area $\leq c \cdot \operatorname{area}(Q)$

The Arrwwid number of a space-filling curve

Arrwwid number $=$ smallest a such that \exists constant c such that any disk Q is covered by $\leq a$ tiles of total area $\leq c \cdot \operatorname{area}(Q)$

The Arrwwid number of a space-filling curve

space-filling curve $=$ rec. tiling + ordering rule s.t.
all subtiles within any tile are consecutive
\longleftarrow Example: $A R^{2} W^{2}$ order

Arrwwid number $=$ smallest a such that \exists constant c such that

 any disk Q is covered by $\leq a$ tiles of total area $\leq c \cdot \operatorname{area}(Q)$
The Arrwwid number of a space-filling curve

space-filling curve $=$ rec. tiling + ordering rule s.t. all subtiles within any tile are consecutive
\longleftarrow Example: $A R^{2} W^{2}$ order

The Arrwwid number of a space-filling curve

space-filling curve $=$ rec. tiling + ordering rule s.t.
all subtiles within any tile are consecutive
\longleftarrow Example: $A R^{2} W^{2}$ order
Q covered by 4 tiles; 2 are consecutive in order \rightarrow only 3 seeks

Arrwwid number $=$ smallest a such that \exists constant c such that

 any disk Q is covered by $\leq a$ tiles of total area $\leq c \cdot$ area (Q)
The Arrwwid number of a space-filling curve

space-filling curve $=$ rec. tiling + ordering rule s.t.
all subtiles within any tile are consecutive
\longleftarrow Example: $A R^{2} W^{2}$ order
Q covered by 4 tiles; 2 are consecutive in order \rightarrow only 3 seeks

Arrwwid number $=$ smallest a such that \exists constant c such that any disk Q is covered by $\leq a$ sets of consecutive tiles of total area $\leq c \cdot \operatorname{area}(Q)$

The Arrwwid number of a space-filling curve

Definition for recursive tilings:
Arrwwid number $=$ smallest a such that \exists constant c such that any disk Q is covered by $\leq a$ tiles of total area $\leq c \cdot \operatorname{area}(Q)$

Definition for space-filling curves (scanning orders of recursive tilings):
Arrwwid number $=$ smallest a such that \exists constant c such that any disk Q is covered by $\leq a$ sets of consecutive tiles of total area $\leq c \cdot \operatorname{area}(Q)$

Some curves have smaller Arrwwid nr. than the underlying tiling:

$-A R^{2} W^{2}: 3 / 4$

The Arrwwid number of a space-filling curve

Definition for recursive tilings:
Arrwwid number $=$ smallest a such that \exists constant c such that any disk Q is covered by $\leq a$ tiles of total area $\leq c \cdot \operatorname{area}(Q)$

Definition for space-filling curves (scanning orders of recursive tilings):
Arrwwid number $=$ smallest a such that \exists constant c such that any disk Q is covered by $\leq a$ sets of consecutive tiles of total area $\leq c \cdot \operatorname{area}(Q)$

Some curves have smaller Arrwwid nr. than the underlying tiling:

Some tilings have Arrwwid nr. 3.

Some curves have Arrwwid nr. $<\mathbf{3}$?
Asano et al.: Not if tiling divides squares into four squares Yours truly: Not ever (assuming tiles are simply connected)

Results

Herman Haverkort: Recursive tilings and space-filling curves with little fragmentation. arXiv:1002.1843 [cs.CG], 2010
best Arrwwid nrs. for tilings 2D
uniform squares
4 [ARRWW]
best nrs. for space-filling curves 2D
uniform squares
3 [ARRWW] \longleftarrow most known curves have 4

Arrwwid number $=$ smallest a such that \exists constant c such that any disk Q is covered by $\leq a$ (sets of consecutive) tiles of total area $\leq c \cdot \operatorname{area}(Q)$

Results

> Herman Haverkort: Recursive tilings and space-filling curves with little fragmentation. arXiv:1002.1843 [cs.CG], 2010
best Arrwwid nrs. for tilings 2D
uniform squares 4 [ARRWW]
uniform rectangles 3
uniform tiles of any shape 3
best nrs. for space-filling curves 2D
uniform squaresuniform rectangles3
uniform tiles of any shape
3 [ARRWW] \longleftarrow most known curves have 4
lower bound holds for simple tiles
Arrwwid number $=$ smallest a such that \exists constant c such thatany disk Q is covered by $\leq a$ (sets of consecutive) tiles of total area $\leq c \cdot \operatorname{area}(Q)$

Results

Arrwwid number $=$ smallest a such that \exists constant c such that any disk Q is covered by $\leq a$ (sets of consecutive) tiles of total area $\leq c \cdot \operatorname{area}(Q)$

Results

Herman Haverkort: Recursive tilings and space-filling curves with little fragmentation. arXiv:1002.1843 [cs.CG], 2010

best Arrwwid nrs. for tilings	2D	3D	d-D
uniform hypercubes	4 [ARRWW]	8	2^{d}
uniform hyperboxes	3	6 (lwbd 4)	$\frac{3}{4} \cdot 2^{d}$ (lwbd:?)
uniform tiles of any shape	3	4	$d+1$

best nrs. for space-filling curves
2D
uniform hypercubes uniform hyperboxes uniform tiles of any shape
lower bound holds for simple tiles

Arrwwid number $=$ smallest a such that \exists constant c such that any disk Q is covered by $\leq a$ (sets of consecutive) tiles of total area $\leq c \cdot \operatorname{area}(Q)$

Results

> Herman Haverkort: Recursive tilings and space-filling curves with little fragmentation. arXiv:1002.1843 [cs.CG], 2010
best Arrwwid nrs. for tilings
2D
3D d-D
uniform hypercubes uniform hyperboxes

2D

3 [ARRWW]
3 uniform hyperboxes uniform tiles of any shape
uniform hypercubes
lower bound holds for simple tiles
uniform tiles of any shape
best nrs. for space-filling curves

4 [ARRWW]

8 2^{d}
$d+1$
d-D
8 (lwbd 7) $\quad 2^{d}\left(\operatorname{lwbd} 2^{d}-1\right)$
6 (lwbd 4) $\frac{3}{4} \cdot 2^{d}$ (lwbd:?)
 $d+1$
(lwbd:?)

Arrwwid number $=$ smallest a such that \exists constant c such that any disk Q is covered by $\leq a$ (sets of consecutive) tiles of total area $\leq c \cdot \operatorname{area}(Q)$

Results

Herman Haverkort: Recursive tilings and space-filling curves with little fragmentation. arXiv:1002.1843 [cs.CG], 2010

best Arrwwid nrs. for tilings	2D	3D	d-D
uniform hypercubes	$4[$ ARRWW]	8	2^{d}
uniform hyperboxes	3	6 (lwbd 4)	$\frac{3}{4} \cdot 2^{d}$ (lwbd:?)
uniform tiles of any shape	3	4	$d+1$

best nrs. for space-filling curves
2D
3D
uniform hypercubes uniform hyperboxes

lower bound holds for simple tiles
...for convex tiles exponential gap between cubes / general shapes (but maybe also in c)
Arrwwid number $=$ smallest a such that \exists constant c such that any disk Q is covered by $\leq a$ (sets of consecutive) tiles of total area $\leq c \cdot \operatorname{area}(Q)$

Results

Herman Haverkort: Recursive tilings and space-filling curves with little fragmentation. arXiv:1002.1843 [cs.CG], 2010

best Arrwwid nrs. for tilings	2D	3D	d-D
uniform hypercubes	4 [ARRWW]	8	2^{d}
uniform hyperboxes	3	6 (lwbd 4)	$\frac{3}{4} \cdot 2^{d}$ (lwbd:?)
uniform tiles of any shape	3	4	$d+1$

THAT'S ALL FOLKS

best nrs. for space-filling curves

2D

3D $d-\mathrm{D}$
uniform hypercubes uniform hyperboxes uniform tiles of any shape lower bound holds for simple tiles ...for convex tiles exponential gap between cubes / general shapes (but maybe also in c)
Arrwwid number $=$ smallest a such that \exists constant c such that any disk Q is covered by $\leq a$ (sets of consecutive) tiles of total area $\leq c \cdot \operatorname{area}(Q)$

